C# 有没有办法根据给定的纬度和经度来计算给定一天太阳落山和升起的时间?

有帮助吗?

解决方案

的Javascript计算<德尔> 此处 。现在你只需要移植。


编辑:计算是在此页的源代码现在


编辑:此处是直接链接到源码。没有必要去通过HTML打猎。

其他提示

我知道这个职位是旧的,但如果有人还在寻找......

CoordinateSharp 是可作为NuGet包。它是一个独立的装箱率,可以处理太阳以及月亮次。

Celestial cel = Celestial.CalculateCelestialTimes(85.57682, -70.75678, new DateTime(2017,8,21));
Console.WriteLine(cel.SunRise.Value.ToString());

注意:

它假定DateTime是否总是在UTC。

最后,您可能需要参考天体太阳/月亮.Condition如果一个日期返回null。当太阳向上/向下整天发生这种情况。

EDIT 2019年1月9日

在图书馆,因为这后急剧的变化。它现在可以处理本地倍为好。

我用NAA javascript和C#创建在C#这个库。

日出和日落在C#

我测试针对这两个位点,并且它示出了时间酷似网站做。

http://www.timeanddate.com/sun/usa/seattle

http://www.esrl.noaa.gov/gmd/grad/solcalc/

这个API似乎为我工作:

http://sunrise-sunset.org/api

对此可接受的答案是 JavaScript 实现,它不适合我的应用程序,因为我需要在 C# 中进行计算。

我使用了这个 C# 代码: http://wiki.crowe.co.nz/Calculate%20Sunrise%2fSunset.ashx, ,我已经在这里根据日出/日落时间进行了验证: http://www.timeanddate.com/astronomy/.

如果我将秒舍入到最接近的分钟,则 C# 实现的日出和日落时间与 timeanddate.com 上显示的相应值匹配,包括夏令时的情况。不过,代码有点让人不知所措(除非您也想要月相数据),所以我将重构它以专门执行我现在需要的数字是正确的。

启动与此信息:

Sunrise_equation

我使用这个莱特Ruby脚本仍处于酝酿。 我无法理解多部分Julian日期。

有一点是明确的是,你应该去准确太阳能中转时间。 然后减去并添加semi_diurnal_arc = ACOS(cos_omega),其是基于 根据您的纬度和太阳赤纬。哦!并且一定要包括太阳能 中心与地球折射。看来这个世界是相当的魔术师。

VB.Net版本dotsa的答案,这也可以自动地确定的时区。

输出(由今天晚上看日落选中):

“输出”

Main.VB:

Module Main

Sub Main()

    ' http://www.timeanddate.com/sun/usa/seattle
    ' http://www.esrl.noaa.gov/gmd/grad/solcalc/

    ' Vessy, Switzerland
    Dim latitude As Double = 46.17062
    Dim longitude As Double = 6.161667
    Dim dst As Boolean = True
    Dim timehere As DateTime = DateTime.Now

    Console.WriteLine("It is currently {0:HH:mm:ss} UTC", DateTime.UtcNow)
    Console.WriteLine("The time here, at {0}°,{1}° is {2:HH:mm:ss}", latitude, longitude, timehere)
    Dim local As TimeZoneInfo = TimeZoneInfo.Local
    Dim zone As Integer = local.BaseUtcOffset().TotalHours

    If local.SupportsDaylightSavingTime Then
        Dim standard As String = local.StandardName
        Dim daylight As String = local.DaylightName
        dst = local.IsDaylightSavingTime(timehere)
        Dim current As String = IIf(dst, daylight, standard)
        Console.WriteLine("Daylight-saving time is supported here. Current offset {0:+0} hours, {1}", zone, current)
    Else
        Console.WriteLine("Daylight-saving time is not supported here")
    End If

    System.Console.WriteLine("Sunrise today {0}", Sunrises(latitude, longitude))
    System.Console.WriteLine("Sunset  today {0}", Sunsets(latitude, longitude))
    System.Console.ReadLine()
End Sub

End Module

Sun.vb:

Public Module Sun
' Get sunrise time at latitude, longitude using local system timezone
Function Sunrises(latitude As Double, longitude As Double) As DateTime
    Dim julian As Double = JulianDay(DateTime.Now)
    Dim rises As Double = SunRiseUTC(julian, latitude, longitude)
    Dim timehere As DateTime = DateTime.Now
    Dim local As TimeZoneInfo = TimeZoneInfo.Local
    Dim dst As Boolean = local.IsDaylightSavingTime(timehere)
    Dim zone As Integer = local.BaseUtcOffset().TotalHours
    Dim result As DateTime = getDateTime(rises, zone, timehere, dst)
    Return result
End Function
' Get sunset time at latitude, longitude using local system timezone
Function Sunsets(latitude As Double, longitude As Double) As DateTime
    Dim julian As Double = JulianDay(DateTime.Now)
    Dim rises As Double = SunSetUTC(julian, latitude, longitude)
    Dim timehere As DateTime = DateTime.Now
    Dim local As TimeZoneInfo = TimeZoneInfo.Local
    Dim dst As Boolean = local.IsDaylightSavingTime(timehere)
    Dim zone As Integer = local.BaseUtcOffset().TotalHours
    Dim result As DateTime = getDateTime(rises, zone, timehere, dst)
    Return result
End Function
' Convert radian angle to degrees
Public Function Degrees(angleRad As Double) As Double
    Return (180.0 * angleRad / Math.PI)
End Function
' Convert degree angle to radians
Public Function Radians(angleDeg As Double) As Double
    Return (Math.PI * angleDeg / 180.0)
End Function
'* Name: JulianDay  
'* Type: Function   
'* Purpose: Julian day from calendar day    
'* Arguments:   
'* year : 4 digit year  
'* month: January = 1   
'* day : 1 - 31 
'* Return value:    
'* The Julian day corresponding to the date 
'* Note:    
'* Number is returned for start of day. Fractional days should be   
'* added later. 
Public Function JulianDay(year As Integer, month As Integer, day As Integer) As Double
    If month <= 2 Then
        year -= 1
        month += 12
    End If
    Dim A As Double = Math.Floor(year / 100.0)
    Dim B As Double = 2 - A + Math.Floor(A / 4)

    Dim julian As Double = Math.Floor(365.25 * (year + 4716)) + Math.Floor(30.6001 * (month + 1)) + day + B - 1524.5
    Return julian
End Function

Public Function JulianDay([date] As DateTime) As Double
    Return JulianDay([date].Year, [date].Month, [date].Day)
End Function

'***********************************************************************/
'* Name: JulianCenturies    
'* Type: Function   
'* Purpose: convert Julian Day to centuries since J2000.0.  
'* Arguments:   
'* julian : the Julian Day to convert   
'* Return value:    
'* the T value corresponding to the Julian Day  
'***********************************************************************/

Public Function JulianCenturies(julian As Double) As Double
    Dim T As Double = (julian - 2451545.0) / 36525.0
    Return T
End Function


'***********************************************************************/
'* Name: JulianDayFromJulianCentury 
'* Type: Function   
'* Purpose: convert centuries since J2000.0 to Julian Day.  
'* Arguments:   
'* t : number of Julian centuries since J2000.0 
'* Return value:    
'* the Julian Day corresponding to the t value  
'***********************************************************************/

Public Function JulianDayFromJulianCentury(t As Double) As Double
    Dim julian As Double = t * 36525.0 + 2451545.0
    Return julian
End Function


'***********************************************************************/
'* Name: calGeomMeanLongSun 
'* Type: Function   
'* Purpose: calculate the Geometric Mean Longitude of the Sun   
'* Arguments:   
'* t : number of Julian centuries since J2000.0 
'* Return value:    
'* the Geometric Mean Longitude of the Sun in degrees   
'***********************************************************************/

Public Function GemoetricMeanLongitude(t As Double) As Double
    Dim L0 As Double = 280.46646 + t * (36000.76983 + 0.0003032 * t)
    While L0 > 360.0
        L0 -= 360.0
    End While
    While L0 < 0.0
        L0 += 360.0
    End While
    Return L0
    ' in degrees
End Function


'***********************************************************************/
'* Name: calGeomAnomalySun  
'* Type: Function   
'* Purpose: calculate the Geometric Mean Anomaly of the Sun 
'* Arguments:   
'* t : number of Julian centuries since J2000.0 
'* Return value:    
'* the Geometric Mean Anomaly of the Sun in degrees 
'***********************************************************************/

Public Function GemoetricMeanAnomaly(t As Double) As Double
    Dim M As Double = 357.52911 + t * (35999.05029 - 0.0001537 * t)
    Return M
    ' in degrees
End Function

'***********************************************************************/
'* Name: EarthOrbitEccentricity 
'* Type: Function   
'* Purpose: calculate the eccentricity of earth's orbit 
'* Arguments:   
'* t : number of Julian centuries since J2000.0 
'* Return value:    
'* the unitless eccentricity    
'***********************************************************************/


Public Function EarthOrbitEccentricity(t As Double) As Double
    Dim e As Double = 0.016708634 - t * (0.000042037 + 0.0000001267 * t)
    Return e
    ' unitless
End Function

'***********************************************************************/
'* Name: SunCentre  
'* Type: Function   
'* Purpose: calculate the equation of center for the sun    
'* Arguments:   
'* t : number of Julian centuries since J2000.0 
'* Return value:    
'* in degrees   
'***********************************************************************/


Public Function SunCentre(t As Double) As Double
    Dim m As Double = GemoetricMeanAnomaly(t)

    Dim mrad As Double = Radians(m)
    Dim sinm As Double = Math.Sin(mrad)
    Dim sin2m As Double = Math.Sin(mrad + mrad)
    Dim sin3m As Double = Math.Sin(mrad + mrad + mrad)

    Dim C As Double = sinm * (1.914602 - t * (0.004817 + 0.000014 * t)) + sin2m * (0.019993 - 0.000101 * t) + sin3m * 0.000289
    Return C
    ' in degrees
End Function

'***********************************************************************/
'* Name: SunTrueLongitude   
'* Type: Function   
'* Purpose: calculate the true longitude of the sun 
'* Arguments:   
'* t : number of Julian centuries since J2000.0 
'* Return value:    
'* sun's true longitude in degrees  
'***********************************************************************/


Public Function SunTrueLongitude(t As Double) As Double
    Dim l0 As Double = GemoetricMeanLongitude(t)
    Dim c As Double = SunCentre(t)

    Dim O As Double = l0 + c
    Return O
    ' in degrees
End Function

'***********************************************************************/
'* Name: SunTrueAnomaly 
'* Type: Function   
'* Purpose: calculate the true anamoly of the sun   
'* Arguments:   
'* t : number of Julian centuries since J2000.0 
'* Return value:    
'* sun's true anamoly in degrees    
'***********************************************************************/

Public Function SunTrueAnomaly(t As Double) As Double
    Dim m As Double = GemoetricMeanAnomaly(t)
    Dim c As Double = SunCentre(t)

    Dim v As Double = m + c
    Return v
    ' in degrees
End Function

'***********************************************************************/
'* Name: SunDistanceAU  
'* Type: Function   
'* Purpose: calculate the distance to the sun in AU 
'* Arguments:   
'* t : number of Julian centuries since J2000.0 
'* Return value:    
'* sun radius vector in AUs 
'***********************************************************************/

Public Function SunDistanceAU(t As Double) As Double
    Dim v As Double = SunTrueAnomaly(t)
    Dim e As Double = EarthOrbitEccentricity(t)

    Dim R As Double = (1.000001018 * (1 - e * e)) / (1 + e * Math.Cos(Radians(v)))
    Return R
    ' in AUs
End Function

'***********************************************************************/
'* Name: SunApparentLongitude   
'* Type: Function   
'* Purpose: calculate the apparent longitude of the sun 
'* Arguments:   
'* t : number of Julian centuries since J2000.0 
'* Return value:    
'* sun's apparent longitude in degrees  
'***********************************************************************/

Public Function SunApparentLongitude(t As Double) As Double
    Dim o As Double = SunTrueLongitude(t)

    Dim omega As Double = 125.04 - 1934.136 * t
    Dim lambda As Double = o - 0.00569 - 0.00478 * Math.Sin(Radians(omega))
    Return lambda
    ' in degrees
End Function

'***********************************************************************/
'* Name: MeanObliquityOfEcliptic    
'* Type: Function   
'* Purpose: calculate the mean obliquity of the ecliptic    
'* Arguments:   
'* t : number of Julian centuries since J2000.0 
'* Return value:    
'* mean obliquity in degrees    
'***********************************************************************/

Public Function MeanObliquityOfEcliptic(t As Double) As Double
    Dim seconds As Double = 21.448 - t * (46.815 + t * (0.00059 - t * (0.001813)))
    Dim e0 As Double = 23.0 + (26.0 + (seconds / 60.0)) / 60.0
    Return e0
    ' in degrees
End Function

'***********************************************************************/
'* Name: calcObliquityCorrection    
'* Type: Function   
'* Purpose: calculate the corrected obliquity of the ecliptic   
'* Arguments:   
'* t : number of Julian centuries since J2000.0 
'* Return value:    
'* corrected obliquity in degrees   
'***********************************************************************/

Public Function calcObliquityCorrection(t As Double) As Double
    Dim e0 As Double = MeanObliquityOfEcliptic(t)

    Dim omega As Double = 125.04 - 1934.136 * t
    Dim e As Double = e0 + 0.00256 * Math.Cos(Radians(omega))
    Return e
    ' in degrees
End Function

'***********************************************************************/
'* Name: SunRightAscension  
'* Type: Function   
'* Purpose: calculate the right ascension of the sun    
'* Arguments:   
'* t : number of Julian centuries since J2000.0 
'* Return value:    
'* sun's right ascension in degrees 
'***********************************************************************/

Public Function SunRightAscension(t As Double) As Double
    Dim e As Double = calcObliquityCorrection(t)
    Dim lambda As Double = SunApparentLongitude(t)

    Dim tananum As Double = (Math.Cos(Radians(e)) * Math.Sin(Radians(lambda)))
    Dim tanadenom As Double = (Math.Cos(Radians(lambda)))
    Dim alpha As Double = Degrees(Math.Atan2(tananum, tanadenom))
    Return alpha
    ' in degrees
End Function

'***********************************************************************/
'* Name: SunDeclination 
'* Type: Function   
'* Purpose: calculate the declination of the sun    
'* Arguments:   
'* t : number of Julian centuries since J2000.0 
'* Return value:    
'* sun's declination in degrees 
'***********************************************************************/

Public Function SunDeclination(t As Double) As Double
    Dim e As Double = calcObliquityCorrection(t)
    Dim lambda As Double = SunApparentLongitude(t)

    Dim sint As Double = Math.Sin(Radians(e)) * Math.Sin(Radians(lambda))
    Dim theta As Double = Degrees(Math.Asin(sint))
    Return theta
    ' in degrees
End Function

'***********************************************************************/
'* Name: TrueSolarToMeanSolar   
'* Type: Function   
'* Purpose: calculate the difference between true solar time and mean   
'*   solar time 
'* Arguments:   
'* t : number of Julian centuries since J2000.0 
'* Return value:    
'* equation of time in minutes of time  
'***********************************************************************/

Public Function TrueSolarToMeanSolar(t As Double) As Double
    Dim epsilon As Double = calcObliquityCorrection(t)
    Dim l0 As Double = GemoetricMeanLongitude(t)
    Dim e As Double = EarthOrbitEccentricity(t)
    Dim m As Double = GemoetricMeanAnomaly(t)

    Dim y As Double = Math.Tan(Radians(epsilon) / 2.0)
    y *= y

    Dim sin2l0 As Double = Math.Sin(2.0 * Radians(l0))
    Dim sinm As Double = Math.Sin(Radians(m))
    Dim cos2l0 As Double = Math.Cos(2.0 * Radians(l0))
    Dim sin4l0 As Double = Math.Sin(4.0 * Radians(l0))
    Dim sin2m As Double = Math.Sin(2.0 * Radians(m))

    Dim Etime As Double = y * sin2l0 - 2.0 * e * sinm + 4.0 * e * y * sinm * cos2l0 - 0.5 * y * y * sin4l0 - 1.25 * e * e * sin2m

    Return Degrees(Etime) * 4.0
    ' in minutes of time
End Function

'***********************************************************************/
'* Name: SunriseHourAngle   
'* Type: Function   
'* Purpose: calculate the hour angle of the sun at sunrise for the  
'*   latitude   
'* Arguments:   
'* lat : latitude of observer in degrees    
'*  solarDec : declination angle of sun in degrees  
'* Return value:    
'* hour angle of sunrise in radians 
'***********************************************************************/

Public Function SunriseHourAngle(lat As Double, solarDec As Double) As Double
    Dim latRad As Double = Radians(lat)
    Dim sdRad As Double = Radians(solarDec)

    Dim HAarg As Double = (Math.Cos(Radians(90.833)) / (Math.Cos(latRad) * Math.Cos(sdRad)) - Math.Tan(latRad) * Math.Tan(sdRad))

    Dim HA As Double = (Math.Acos(Math.Cos(Radians(90.833)) / (Math.Cos(latRad) * Math.Cos(sdRad)) - Math.Tan(latRad) * Math.Tan(sdRad)))

    Return HA
    ' in radians
End Function

'***********************************************************************/
'* Name: SunsetHourAngle    
'* Type: Function   
'* Purpose: calculate the hour angle of the sun at sunset for the   
'*   latitude   
'* Arguments:   
'* lat : latitude of observer in degrees    
'*  solarDec : declination angle of sun in degrees  
'* Return value:    
'* hour angle of sunset in radians  
'***********************************************************************/

Public Function SunsetHourAngle(lat As Double, solarDec As Double) As Double
    Dim latRad As Double = Radians(lat)
    Dim sdRad As Double = Radians(solarDec)

    Dim HAarg As Double = (Math.Cos(Radians(90.833)) / (Math.Cos(latRad) * Math.Cos(sdRad)) - Math.Tan(latRad) * Math.Tan(sdRad))

    Dim HA As Double = (Math.Acos(Math.Cos(Radians(90.833)) / (Math.Cos(latRad) * Math.Cos(sdRad)) - Math.Tan(latRad) * Math.Tan(sdRad)))

    Return -HA
    ' in radians
End Function


'***********************************************************************/
'* Name: SunRiseUTC 
'* Type: Function   
'* Purpose: calculate the Universal Coordinated Time (UTC) of sunrise   
'*   for the given day at the given location on earth   
'* Arguments:   
'* julian : julian day  
'* latitude : latitude of observer in degrees   
'* longitude : longitude of observer in degrees 
'* Return value:    
'* time in minutes from zero Z  
'***********************************************************************/

'Public  Function SunRiseUTC(julian As Double, latitude As Double, longitude As Double) As Double
'    Dim t As Double = JulianCenturies(julian)

'    ' *** Find the time of solar noon at the location, and use
'    ' that declination. This is better than start of the 
'    ' Julian day

'    Dim noonmin As Double = SolarNoonUTC(t, longitude)
'    Dim tnoon As Double = JulianCenturies(julian + noonmin / 1440.0)

'    ' *** First pass to approximate sunrise (using solar noon)

'    Dim eqTime As Double = TrueSolarToMeanSolar(tnoon)
'    Dim solarDec As Double = SunDeclination(tnoon)
'    Dim hourAngle As Double = SunriseHourAngle(latitude, solarDec)

'    Dim delta As Double = longitude - Degrees(hourAngle)
'    Dim timeDiff As Double = 4 * delta
'    ' in minutes of time
'    Dim timeUTC As Double = 720 + timeDiff - eqTime
'    ' in minutes
'    ' alert("eqTime = " + eqTime + "\nsolarDec = " + solarDec + "\ntimeUTC = " + timeUTC);

'    ' *** Second pass includes fractional julianay in gamma calc

'    Dim newt As Double = JulianCenturies(JulianDayFromJulianCentury(t) + timeUTC / 1440.0)
'    eqTime = TrueSolarToMeanSolar(newt)
'    solarDec = SunDeclination(newt)
'    hourAngle = SunriseHourAngle(latitude, solarDec)
'    delta = longitude - Degrees(hourAngle)
'    timeDiff = 4 * delta
'    timeUTC = 720 + timeDiff - eqTime
'    ' in minutes
'    ' alert("eqTime = " + eqTime + "\nsolarDec = " + solarDec + "\ntimeUTC = " + timeUTC);

'    Return timeUTC
'End Function

'***********************************************************************/
'* Name: SolarNoonUTC   
'* Type: Function   
'* Purpose: calculate the Universal Coordinated Time (UTC) of solar 
'*   noon for the given day at the given location on earth  
'* Arguments:   
'* t : number of Julian centuries since J2000.0 
'* longitude : longitude of observer in degrees 
'* Return value:    
'* time in minutes from zero Z  
'***********************************************************************/

Public Function SolarNoonUTC(t As Double, longitude As Double) As Double
    ' First pass uses approximate solar noon to calculate eqtime
    Dim tnoon As Double = JulianCenturies(JulianDayFromJulianCentury(t) + longitude / 360.0)
    Dim eqTime As Double = TrueSolarToMeanSolar(tnoon)
    Dim solNoonUTC As Double = 720 + (longitude * 4) - eqTime
    ' min
    Dim newt As Double = JulianCenturies(JulianDayFromJulianCentury(t) - 0.5 + solNoonUTC / 1440.0)

    eqTime = TrueSolarToMeanSolar(newt)
    ' double solarNoonDec = SunDeclination(newt);
    solNoonUTC = 720 + (longitude * 4) - eqTime
    ' min
    Return solNoonUTC
End Function

'***********************************************************************/
'* Name: SunSetUTC  
'* Type: Function   
'* Purpose: calculate the Universal Coordinated Time (UTC) of sunset    
'*   for the given day at the given location on earth   
'* Arguments:   
'* julian : julian day  
'* latitude : latitude of observer in degrees   
'* longitude : longitude of observer in degrees 
'* Return value:    
'* time in minutes from zero Z  
'***********************************************************************/

Public Function SunSetUTC(julian As Double, latitude As Double, longitude As Double) As Double
    Dim t = JulianCenturies(julian)
    Dim eqTime = TrueSolarToMeanSolar(t)
    Dim solarDec = SunDeclination(t)
    Dim hourAngle = SunriseHourAngle(latitude, solarDec)
    hourAngle = -hourAngle
    Dim delta = longitude + Degrees(hourAngle)
    Dim timeUTC = 720 - (4.0 * delta) - eqTime
    ' in minutes
    Return timeUTC
End Function

Public Function SunRiseUTC(julian As Double, latitude As Double, longitude As Double) As Double
    Dim t = JulianCenturies(julian)
    Dim eqTime = TrueSolarToMeanSolar(t)
    Dim solarDec = SunDeclination(t)
    Dim hourAngle = SunriseHourAngle(latitude, solarDec)
    Dim delta = longitude + Degrees(hourAngle)
    Dim timeUTC = 720 - (4.0 * delta) - eqTime
    ' in minutes
    Return timeUTC
End Function

Public Function getTimeString(time As Double, timezone As Integer, julian As Double, dst As Boolean) As String
    Dim timeLocal = time + (timezone * 60.0)
    Dim riseT = JulianCenturies(julian + time / 1440.0)
    timeLocal += (If((dst), 60.0, 0.0))
    Return getTimeString(timeLocal)
End Function

Public Function getDateTime(time As Double, timezone As Integer, [date] As DateTime, dst As Boolean) As System.Nullable(Of DateTime)
    Dim julian As Double = JulianDay([date])
    Dim timeLocal = time + (timezone * 60.0)
    Dim riseT = JulianCenturies(julian + time / 1440.0)
    timeLocal += (If((dst), 60.0, 0.0))
    Return getDateTime(timeLocal, [date])
End Function

Private Function getTimeString(minutes As Double) As String

    Dim output As String = ""

    If (minutes >= 0) AndAlso (minutes < 1440) Then
        Dim floatHour = minutes / 60.0
        Dim hour = Math.Floor(floatHour)
        Dim floatMinute = 60.0 * (floatHour - Math.Floor(floatHour))
        Dim minute = Math.Floor(floatMinute)
        Dim floatSec = 60.0 * (floatMinute - Math.Floor(floatMinute))
        Dim second = Math.Floor(floatSec + 0.5)
        If second > 59 Then
            second = 0
            minute += 1
        End If
        If (second >= 30) Then
            minute += 1
        End If
        If minute > 59 Then
            minute = 0
            hour += 1
        End If
        output = [String].Format("{0:00}:{1:00}", hour, minute)
    Else
        Return "error"
    End If

    Return output
End Function

Private Function getDateTime(minutes As Double, [date] As DateTime) As System.Nullable(Of DateTime)

    Dim retVal As System.Nullable(Of DateTime) = Nothing

    If (minutes >= 0) AndAlso (minutes < 1440) Then
        Dim floatHour = minutes / 60.0
        Dim hour = Math.Floor(floatHour)
        Dim floatMinute = 60.0 * (floatHour - Math.Floor(floatHour))
        Dim minute = Math.Floor(floatMinute)
        Dim floatSec = 60.0 * (floatMinute - Math.Floor(floatMinute))
        Dim second = Math.Floor(floatSec + 0.5)
        If second > 59 Then
            second = 0
            minute += 1
        End If
        If (second >= 30) Then
            minute += 1
        End If
        If minute > 59 Then
            minute = 0
            hour += 1
        End If
        Return New DateTime([date].Year, [date].Month, [date].Day, CInt(hour), CInt(minute), CInt(second))
    Else
        Return retVal
    End If
End Function
End Module

我做了一个快速的Python脚本来做到这一点: SunriseSunsetCalculator

我还没有把它包装在类中,但它可以是用于其它有用的。


编辑:开源是真棒,因为提交的基本脚本,有人包裹它的模块中,另一种添加了一个CLI接口!由于mbideau和nfischer的贡献!

您需要一个公式,其包括时间的方程以允许围绕太阳地球月球系统的偏心轨道。您需要使用坐标与适当的基准点,如WGS84或NAD27或类似的东西。您需要使用的儒略历,而不是我们日常使用的基础上get5这些时间右边的一个。它不是时间在一秒钟内猜一件容易的事情。我还想有我的位置的时间,其中的阴影长度等于任何高度。这应该当太阳前高后中午升高地平线60度以上,每天发生两次。此外,据我了解,你只需要每年增加正好有一天能得到恒星时间,所以如果你想提高你的时钟频率X 366.25 / 365.25,你现在可能有一个恒星的时钟,而不是民事时钟??? “MATH是其中有人强大写宇宙中的语言”

另一个好JS实现是 suncalc

的代码线的数量是可管理的,所以移植到其他语言(C#)当然是可能的。

如果你喜欢一个外部服务可以使用这个漂亮的和免费的日出和日落的时候API: http://sunrise-sunset.org/api

我一直在使用它的几个项目,它工作得很好,数据似乎很准确。只是做一个HTTP得到的请求 http://api.sunrise-sunset.org/json

接受参数:

  • 纬度:纬度十进制的度。需要。
  • 液化天然气:经十进制的度。需要。
  • 日期:日YYYY-MM-DD格式。还接受其他日期格式和甚至相对的日期格式。如果不存在,日期默认当前的日期。可选择的。
  • 回调:回呼功能,名为他的反应。可选择的。
  • 格式化:0或1(1是默认)。时值中的反应将是表示如下ISO8601和day_length将表现在几秒钟内。可选择的。

这种反应包括日出和日落的时间以及黄昏的时间。

我在UWP测试此NuGet包。

https://www.nuget.org/packages/SolarCalculator/

的文档是有点粗略,并且这里:

https://github.com/porrey/Solar-Calculator

您可以使用它来获取日出,因为

LA =纬度;和LO =经度;为你的面积:

            SolarTimes solarTimes = new SolarTimes(DateTime.Now, la, lo);
            DateTime sr = solarTimes.Sunrise;
            DateTime dt = Convert.ToDateTime(sr);
            textblockb.Text = dt.ToString("h:mm:ss");

您可以使用PM经理在Visual Studio安装

Install-Package SolarCalculator -Version 2.0.2 

或通过在 “管理的NuGet包” 的Visual Studio库仰视SolarCalculator。

是的,戒掉一些。

一些模式链接。

http://williams.best.vwh.net/sunrise_sunset_example.htm

http://www.codeproject.com/Articles/29306/C-Class-for-Calculate-Sunrise-and-Sunset-Times

https://social.msdn.microsoft.com/Forums/vstudio/en-US/a4fad4c3-6d18-41fc-82b7-1f3031349837/get-sunrise-and-sunset-time-based-on-latitude-and-longitude?论坛=csharpgeneral

https://gist.github.com/cstrahan/767532

http://pointofint.blogspot.com/2014/06/sunrise-and-sunset-in-c.html

http://yaddb.blogspot.com/2013/01/how-to-calculate-sunrise-and-sunset.html

https://forums.asp.net/t/1810934.aspx?Sunrise+and+Sunset+timings+计算+

http://www.ip2location.com/tutorials/display-sunrise-sunset-time-using-csharp-and-mysql-database

http://zh.pudn.com/downloads270/sourcecode/windows/csharp/detail1235934_zh.html

http://regator.com/p/25716249/c_class_for_calculate_sunrise_and_sunset_times

http://forums.xkcd.com/viewtopic.php?t=102253

http://www.redrok.com/solar_position_algorithm.pdf

http://sidstation.loudet.org/sunazimuth-en.xhtml

https://sourceforge.net/directory/os:windows/?q=sunrise/set%20times

https://www.nuget.org/packages/SolarCalculator/

http://www.grasshopper3d.com/forum/topics/solar-calculation-plugin

这是我很久以前为 Planet Source Code 所做的一个项目,但幸运的是我将其保存在其他地方,因为该网站丢失了数据。

https://github.com/DouglasAllen/SunTimes.VSCS.Net

使用这个 Gist plus

https://gist.github.com/DouglasAllen/c682e4c412a0b9d8f536b014c1766f20

现在简要解释一下执行此操作的技术。

首先,在任何一天,您都需要真正的太阳正午或中天到达您所在的位置。

这考虑了您当地的经度。只需除以 15 即可将其转换为时间。

这是您距祖鲁时区或零经度晚了多少时间。

从中午 12:00 开始。

并根据经度计算出您的时间。

现在是困难的部分。您需要一种计算时间方程的方法。

这是由地球倾斜和绕太阳公转造成的时差。

这会给你一个想法...... https://en.wikipedia.org/wiki/Equation_of_time

但他们有一个更简单的公式...... https://en.wikipedia.org/wiki/Sunrise_equation

这个人有一些很多人读过或购买的书。:-Dhttps://en.wikipedia.org/wiki/Jean_Meeus

将您的第一个计算用于平均太阳能运输并计算JDN ... https://en.wikipedia.org/wiki/Julian_day

所有角度公式都使用儒略世纪的某个时间https://en.wikipedia.org/wiki/Julian_year_(天文学)

https://en.wikipedia.org/wiki/Epoch_(天文学)

基本上,您的JDN负责时代,例如J2000或2451545.0除以36525.0,以给您朱利安世纪或T,用于大多数具有t作为参数的公式。有时会使用朱利安千年。在这种情况下,它是 3652500.0

诀窍是找到那些可以帮助您求解时间方程的角度公式。

然后,您将获得真正的太阳凌日,并减去您所在位置的半天或添加半天的阳光。您可以在答案和软件中找到这些内容。

一旦你开始做某事,你可以通过搜索时间或在线计算器来检查它。

我希望这足以让你继续前进。到处都有图书馆,但创建自己的图书馆并不难。我做到了,但它是用 Ruby 编写的。它可能被证明是有用的......https://github.com/DouglasAllen/gem-equationoftime

祝你好运!

许可以下: CC-BY-SA归因
不隶属于 StackOverflow
scroll top