Frage

Ich brauche die innerhalb und zwischen den Laufabweichungen von einigen Daten im Rahmen der Entwicklung eine neue analytische Chemie Methode zu berechnen. Ich brauche auch Konfidenzintervall aus diesen Daten der R Sprache mit

Ich nehme an, ich brauche anova oder etwas verwenden?

Meine Daten wie

> variance
   Run Rep Value
1    1   1  9.85
2    1   2  9.95
3    1   3 10.00
4    2   1  9.90
5    2   2  8.80
6    2   3  9.50
7    3   1 11.20
8    3   2 11.10
9    3   3  9.80
10   4   1  9.70
11   4   2 10.10
12   4   3 10.00
War es hilfreich?

Lösung 4

Ich habe bei einem ähnlichen Problem gesucht. Ich habe Bezug auf caluclating Konfidenzintervall von Burdick und Graybill (Burdick, R. und Graybill, F. 1992 Konfidenzintervalle auf Varianzkomponenten, CRC Press)

gefunden

einige Code verwenden Ich habe versucht, ich diese Werte zu erhalten



> kiaraov = aov(Value~Run+Error(Run),data=kiar)

> summary(kiaraov)

Error: Run
    Df  Sum Sq Mean Sq
Run  3 2.57583 0.85861

Error: Within
          Df  Sum Sq Mean Sq F value Pr(>F)
Residuals  8 1.93833 0.24229               
> confint = 95

> a = (1-(confint/100))/2

> grandmean = as.vector(kiaraov$"(Intercept)"[[1]][1]) # Grand Mean (I think)

> within = summary(kiaraov)$"Error: Within"[[1]]$"Mean Sq"  # S2^2Mean Square Value for Within Run

> dfRun = summary(kiaraov)$"Error: Run"[[1]]$"Df"

> dfWithin = summary(kiaraov)$"Error: Within"[[1]]$"Df"

> Run = summary(kiaraov)$"Error: Run"[[1]]$"Mean Sq" # S1^2Mean Square for between Run

> between = (Run-within)/((dfWithin/(dfRun+1))+1) # (S1^2-S2^2)/J

> total = between+within

> between # Between Run Variance
[1] 0.2054398

> within # Within Run Variance
[1] 0.2422917

> total # Total Variance
[1] 0.4477315

> betweenCV = sqrt(between)/grandmean * 100 # Between Run CV%

> withinCV = sqrt(within)/grandmean * 100 # Within Run CV%

> totalCV = sqrt(total)/grandmean * 100 # Total CV%

> #within confidence intervals

> withinLCB = within/qf(1-a,8,Inf) # Within LCB

> withinUCB = within/qf(a,8,Inf) # Within UCB

> #Between Confidence Intervals

> n1 = dfRun

> n2 = dfWithin

> G1 = 1-(1/qf(1-a,n1,Inf)) # According to Burdick and Graybill this should be a

> G2 = 1-(1/qf(1-a,n2,Inf))

> H1 = (1/qf(a,n1,Inf))-1  # and this should be 1-a, but my results don't agree

> H2 = (1/qf(a,n2,Inf))-1

> G12 = ((qf(1-a,n1,n2)-1)^2-(G1^2*qf(1-a,n1,n2)^2)-(H2^2))/qf(1-a,n1,n2) # again, should be a, not 1-a

> H12 = ((1-qf(a,n1,n2))^2-H1^2*qf(a,n1,n2)^2-G2^2)/qf(a,n1,n2) # again, should be 1-a, not a

> Vu = H1^2*Run^2+G2^2*within^2+H12*Run*within

> Vl = G1^2*Run^2+H2^2*within^2+G12*within*Run

> betweenLCB = (Run-within-sqrt(Vl))/J # Betwen LCB

> betweenUCB = (Run-within+sqrt(Vu))/J # Between UCB

> #Total Confidence Intervals

> y = (Run+(J-1)*within)/J

> totalLCB = y-(sqrt(G1^2*Run^2+G2^2*(J-1)^2*within^2)/J) # Total LCB

> totalUCB = y+(sqrt(H1^2*Run^2+H2^2*(J-1)^2*within^2)/J) # Total UCB

> result = data.frame(Name=c("within", "between", "total"),CV=c(withinCV,betweenCV,totalCV),LCB=c(sqrt(withinLCB)/grandmean*100,sqrt(betweenLCB)/grandmean*100,sqrt(totalLCB)/grandmean*100),UCB=c(sqrt(withinUCB)/grandmean*100,sqrt(betweenUCB)/grandmean*100,sqrt(totalUCB)/grandmean*100))

> result
     Name       CV      LCB      UCB
1  within 4.926418 3.327584  9.43789
2 between 4.536327      NaN 19.73568
3   total 6.696855 4.846030 20.42647

Hier ist der untere Konfidenzintervall für zwischen Lauf CV kleiner als Null ist, so wie NaN berichtet.

Ich würde gerne einen besseren Weg, dies zu tun. Wenn ich Zeit habe ich könnte versuchen, eine Funktion zu erstellen, dies zu tun.

Paul.

-

Edit: Ich habe schließlich eine Funktion schreiben, hier ist es (caveat emptor)

#' avar Function
#' 
#' Calculate thewithin, between and total %CV of a dataset by ANOVA, and the
#' associated confidence intervals
#' 
#' @param dataf - The data frame to use, in long format 
#' @param afactor Character string representing the column in dataf that contains the factor
#' @param aresponse  Charactyer string representing the column in dataf that contains the response value
#' @param aconfidence What Confidence limits to use, default = 95%
#' @param digits  Significant Digits to report to, default = 3
#' @param debug Boolean, Should debug messages be displayed, default=FALSE
#' @returnType dataframe containing the Mean, Within, Between and Total %CV and LCB and UCB for each
#' @return 
#' @author Paul Hurley
#' @export
#' @examples 
#' #Using the BGBottles data from Burdick and Graybill Page 62
#' assayvar(dataf=BGBottles, afactor="Machine", aresponse="weight")
avar<-function(dataf, afactor, aresponse, aconfidence=95, digits=3, debug=FALSE){
    dataf<-subset(dataf,!is.na(with(dataf,get(aresponse))))
    nmissing<-function(x) sum(!is.na(x))
    n<-nrow(subset(dataf,is.numeric(with(dataf,get(aresponse)))))
    datadesc<-ddply(dataf, afactor, colwise(nmissing,aresponse))
    I<-nrow(datadesc)
    if(debug){print(datadesc)}
    if(min(datadesc[,2])==max(datadesc[,2])){
        balance<-TRUE
        J<-min(datadesc[,2])
        if(debug){message(paste("Dataset is balanced, J=",J,"I is ",I,sep=""))}
    } else {
        balance<-FALSE
        Jh<-I/(sum(1/datadesc[,2], na.rm = TRUE))
        J<-Jh
        m<-min(datadesc[,2])
        M<-max(datadesc[,2])
        if(debug){message(paste("Dataset is unbalanced, like me, I is ",I,sep=""))}
        if(debug){message(paste("Jh is ",Jh, ", m is ",m, ", M is ",M, sep=""))}
    }
    if(debug){message(paste("Call afactor=",afactor,", aresponse=",aresponse,sep=""))}
    formulatext<-paste(as.character(aresponse)," ~ 1 + Error(",as.character(afactor),")",sep="")
    if(debug){message(paste("formula text is ",formulatext,sep=""))}
    aovformula<-formula(formulatext)
    if(debug){message(paste("Formula is ",as.character(aovformula),sep=""))}
    assayaov<-aov(formula=aovformula,data=dataf)
    if(debug){
        print(assayaov)
        print(summary(assayaov))
    }
    a<-1-((1-(aconfidence/100))/2)
    if(debug){message(paste("confidence is ",aconfidence,", alpha is ",a,sep=""))}
    grandmean<-as.vector(assayaov$"(Intercept)"[[1]][1]) # Grand Mean (I think)
    if(debug){message(paste("n is",n,sep=""))}

    #This line commented out, seems to choke with an aov object built from an external formula
    #grandmean<-as.vector(model.tables(assayaov,type="means")[[1]]$`Grand mean`) # Grand Mean (I think)
    within<-summary(assayaov)[[2]][[1]]$"Mean Sq"  # d2e, S2^2 Mean Square Value for Within Machine = 0.1819
    dfRun<-summary(assayaov)[[1]][[1]]$"Df"  # DF for within = 3
    dfWithin<-summary(assayaov)[[2]][[1]]$"Df"  # DF for within = 8
    Run<-summary(assayaov)[[1]][[1]]$"Mean Sq" # S1^2Mean Square for Machine
    if(debug){message(paste("mean square for Run ?",Run,sep=""))}
    #Was between<-(Run-within)/((dfWithin/(dfRun+1))+1) but my comment suggests this should be just J, so I'll use J !
    between<-(Run-within)/J # d2a (S1^2-S2^2)/J
    if(debug){message(paste("S1^2 mean square machine is ",Run,", S2^2 mean square within is ",within))}
    total<-between+within
    between # Between Run Variance
    within # Within Run Variance
    total # Total Variance
    if(debug){message(paste("between is ",between,", within is ",within,", Total is ",total,sep=""))}

    betweenCV<-sqrt(between)/grandmean * 100 # Between Run CV%
    withinCV<-sqrt(within)/grandmean * 100 # Within Run CV%
    totalCV<-sqrt(total)/grandmean * 100 # Total CV%
    n1<-dfRun
    n2<-dfWithin
    if(debug){message(paste("n1 is ",n1,", n2 is ",n2,sep=""))}
    #within confidence intervals
    if(balance){
        withinLCB<-within/qf(a,n2,Inf) # Within LCB
        withinUCB<-within/qf(1-a,n2,Inf) # Within UCB
    } else {
        withinLCB<-within/qf(a,n2,Inf) # Within LCB
        withinUCB<-within/qf(1-a,n2,Inf) # Within UCB
    }
#Mean Confidence Intervals
    if(debug){message(paste(grandmean,"+/-(sqrt(",Run,"/",n,")*qt(",a,",df=",I-1,"))",sep=""))} 
    meanLCB<-grandmean+(sqrt(Run/n)*qt(1-a,df=I-1)) # wrong
    meanUCB<-grandmean-(sqrt(Run/n)*qt(1-a,df=I-1)) # wrong
    if(debug){message(paste("Grandmean is ",grandmean,", meanLCB = ",meanLCB,", meanUCB = ",meanUCB,aresponse,sep=""))}
    if(debug){print(summary(assayaov))}
#Between Confidence Intervals
    G1<-1-(1/qf(a,n1,Inf)) 
    G2<-1-(1/qf(a,n2,Inf))
    H1<-(1/qf(1-a,n1,Inf))-1  
    H2<-(1/qf(1-a,n2,Inf))-1
    G12<-((qf(a,n1,n2)-1)^2-(G1^2*qf(a,n1,n2)^2)-(H2^2))/qf(a,n1,n2) 
    H12<-((1-qf(1-a,n1,n2))^2-H1^2*qf(1-a,n1,n2)^2-G2^2)/qf(1-a,n1,n2) 
    if(debug){message(paste("G1 is ",G1,", G2 is ",G2,sep=""))
        message(paste("H1 is ",H1,", H2 is ",H2,sep=""))
        message(paste("G12 is ",G12,", H12 is ",H12,sep=""))
    }
    if(balance){
        Vu<-H1^2*Run^2+G2^2*within^2+H12*Run*within
        Vl<-G1^2*Run^2+H2^2*within^2+G12*within*Run
        betweenLCB<-(Run-within-sqrt(Vl))/J # Betwen LCB
        betweenUCB<-(Run-within+sqrt(Vu))/J # Between UCB
    } else {
        #Burdick and Graybill seem to suggest calculating anova of mean values to find n1S12u/Jh
        meandataf<-ddply(.data=dataf,.variable=afactor, .fun=function(df){mean(with(df, get(aresponse)), na.rm=TRUE)})
        meandataaov<-aov(formula(paste("V1~",afactor,sep="")), data=meandataf)
        sumsquare<-summary(meandataaov)[[1]]$`Sum Sq`
        #so maybe S12u is just that bit ?
        Runu<-(sumsquare*Jh)/n1
        if(debug){message(paste("n1S12u/Jh is ",sumsquare,", so S12u is ",Runu,sep=""))}
        Vu<-H1^2*Runu^2+G2^2*within^2+H12*Runu*within
        Vl<-G1^2*Runu^2+H2^2*within^2+G12*within*Runu
        betweenLCB<-(Runu-within-sqrt(Vl))/Jh # Betwen LCB
        betweenUCB<-(Runu-within+sqrt(Vu))/Jh # Between UCB
        if(debug){message(paste("betweenLCB is ",betweenLCB,", between UCB is ",betweenUCB,sep=""))}
    }
#Total Confidence Intervals
    if(balance){
        y<-(Run+(J-1)*within)/J
        if(debug){message(paste("y is ",y,sep=""))}
        totalLCB<-y-(sqrt(G1^2*Run^2+G2^2*(J-1)^2*within^2)/J) # Total LCB
        totalUCB<-y+(sqrt(H1^2*Run^2+H2^2*(J-1)^2*within^2)/J) # Total UCB
    } else {
        y<-(Runu+(Jh-1)*within)/Jh
        if(debug){message(paste("y is ",y,sep=""))}
        totalLCB<-y-(sqrt(G1^2*Runu^2+G2^2*(Jh-1)^2*within^2)/Jh) # Total LCB
        totalUCB<-y+(sqrt(H1^2*Runu^2+H2^2*(Jh-1)^2*within^2)/Jh) # Total UCB
    }
    if(debug){message(paste("totalLCB is ",totalLCB,", total UCB is ",totalUCB,sep=""))}
#   result<-data.frame(Name=c("within", "between", "total"),CV=c(withinCV,betweenCV,totalCV),
#           LCB=c(sqrt(withinLCB)/grandmean*100,sqrt(betweenLCB)/grandmean*100,sqrt(totalLCB)/grandmean*100),
#           UCB=c(sqrt(withinUCB)/grandmean*100,sqrt(betweenUCB)/grandmean*100,sqrt(totalUCB)/grandmean*100))
    result<-data.frame(Mean=grandmean,MeanLCB=meanLCB, MeanUCB=meanUCB, Within=withinCV,WithinLCB=sqrt(withinLCB)/grandmean*100, WithinUCB=sqrt(withinUCB)/grandmean*100,
            Between=betweenCV, BetweenLCB=sqrt(betweenLCB)/grandmean*100, BetweenUCB=sqrt(betweenUCB)/grandmean*100,
            Total=totalCV, TotalLCB=sqrt(totalLCB)/grandmean*100, TotalUCB=sqrt(totalUCB)/grandmean*100)
    if(!digits=="NA"){
        result$Mean<-signif(result$Mean,digits=digits)
        result$MeanLCB<-signif(result$MeanLCB,digits=digits)
        result$MeanUCB<-signif(result$MeanUCB,digits=digits)
        result$Within<-signif(result$Within,digits=digits)
        result$WithinLCB<-signif(result$WithinLCB,digits=digits)
        result$WithinUCB<-signif(result$WithinUCB,digits=digits)
        result$Between<-signif(result$Between,digits=digits)
        result$BetweenLCB<-signif(result$BetweenLCB,digits=digits)
        result$BetweenUCB<-signif(result$BetweenUCB,digits=digits)
        result$Total<-signif(result$Total,digits=digits)
        result$TotalLCB<-signif(result$TotalLCB,digits=digits)
        result$TotalUCB<-signif(result$TotalUCB,digits=digits)
    }
    return(result)
}

assayvar<-function(adata, aresponse, afactor, anominal, aconfidence=95, digits=3, debug=FALSE){
    result<-ddply(adata,anominal,function(df){
                resul<-avar(dataf=df,afactor=afactor,aresponse=aresponse,aconfidence=aconfidence, digits=digits, debug=debug)
                resul$n<-nrow(subset(df, !is.na(with(df, get(aresponse)))))
                return(resul)
            })
    return(result)
}

Andere Tipps

Sie haben vier Gruppen von drei Beobachtungen:

> run1 = c(9.85, 9.95, 10.00)
> run2 = c(9.90, 8.80, 9.50)
> run3 = c(11.20, 11.10, 9.80)
> run4 = c(9.70, 10.10, 10.00)
> runs = c(run1, run2, run3, run4)
> runs
 [1]  9.85  9.95 10.00  9.90  8.80  9.50 11.20 11.10  9.80  9.70 10.10 10.00
Machen Sie

einige Labels:

> n = rep(3, 4)
> group = rep(1:4, n)
> group
 [1] 1 1 1 2 2 2 3 3 3 4 4 4

Berechnen innerhalb geführte Statistik:

> withinRunStats = function(x) c(sum = sum(x), mean = mean(x), var = var(x), n = length(x))
> tapply(runs, group, withinRunStats)
$`1`
         sum         mean          var            n 
29.800000000  9.933333333  0.005833333  3.000000000 

$`2`
  sum  mean   var     n 
28.20  9.40  0.31  3.00 

$`3`
  sum  mean   var     n 
32.10 10.70  0.61  3.00 

$`4`
        sum        mean         var           n 
29.80000000  9.93333333  0.04333333  3.00000000 

Sie können einige ANOVA tun hier:

> data = data.frame(y = runs, group = factor(group))
> data
       y group
1   9.85     1
2   9.95     1
3  10.00     1
4   9.90     2
5   8.80     2
6   9.50     2
7  11.20     3
8  11.10     3
9   9.80     3
10  9.70     4
11 10.10     4
12 10.00     4

> fit = lm(runs ~ group, data)
> fit

Call:
lm(formula = runs ~ group, data = data)

Coefficients:
(Intercept)       group2       group3       group4  
  9.933e+00   -5.333e-01    7.667e-01   -2.448e-15 

> anova(fit)
Analysis of Variance Table

Response: runs
          Df  Sum Sq Mean Sq F value  Pr(>F)  
group      3 2.57583 0.85861  3.5437 0.06769 .
Residuals  8 1.93833 0.24229                  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> degreesOfFreedom = anova(fit)[, "Df"]
> names(degreesOfFreedom) = c("treatment", "error")
> degreesOfFreedom
treatment     error 
        3         8

Fehler oder innerhalb der Gruppe Varianz:

> anova(fit)["Residuals", "Mean Sq"]
[1] 0.2422917

Behandlung oder zwischen den Gruppen Varianz:

> anova(fit)["group", "Mean Sq"]
[1] 0.8586111

Das sollten Sie genug Vertrauen geben Konfidenzintervall zu tun.

Wenn Sie eine Funktion (wie var) über einen Faktor wie Run oder Rep anwenden möchten, können Sie tapply verwenden:

> with(variance, tapply(Value, Run, var))
          1           2           3           4 
0.005833333 0.310000000 0.610000000 0.043333333 
> with(variance, tapply(Value, Rep, var))
          1          2          3 
0.48562500 0.88729167 0.05583333 

Ich werde einen Riss an diese nehmen, wenn ich mehr Zeit habe, aber in der Zwischenzeit, hier ist die dput() für Kiar der Datenstruktur:

structure(list(Run = c(1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4), Rep = c(1, 
2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3), Value = c(9.85, 9.95, 10, 9.9, 
8.8, 9.5, 11.2, 11.1, 9.8, 9.7, 10.1, 10)), .Names = c("Run", 
"Rep", "Value"), row.names = c(NA, -12L), class = "data.frame")

... für den Fall, Sie möchten einen schnellen Schuss auf ihn nehmen.

Lizenziert unter: CC-BY-SA mit Zuschreibung
Nicht verbunden mit StackOverflow
scroll top