Question

I'm trying to convert a star's B-V color index to an apparent RGB color. Besides look up tables and color ramps, it seems like there's no well known algorithm for doing this.

What's a B-V color index?

It's a number astronomers assign to a star to indicate its apparent color. Hot stars (low B-V) are blue/purple and cool stars (high B-V) are red with those white/orange stars in between.

Initial algorithm

B-V to Kelvin

enter image description here

var t = 4600 * ((1 / ((0.92 * bv) + 1.7)) +(1 / ((0.92 * bv) + 0.62)) );

Kelvin to xyY

If you model a star as a blackbody, then you can use a numerical approximation of the Planckian locus to compute the xy coordinates (CIE chromaticity)

enter image description here

enter image description here

enter image description here

// t to xyY
var x, y = 0;

if (t>=1667 && t<=4000) {
  x = ((-0.2661239 * Math.pow(10,9)) / Math.pow(t,3)) + ((-0.2343580 * Math.pow(10,6)) / Math.pow(t,2)) + ((0.8776956 * Math.pow(10,3)) / t) + 0.179910;
} else if (t > 4000 && t <= 25000) {
  x = ((-3.0258469 * Math.pow(10,9)) / Math.pow(t,3)) + ((2.1070379 * Math.pow(10,6)) / Math.pow(t,2)) + ((0.2226347 * Math.pow(10,3)) / t) + 0.240390;
}

if (t >= 1667 && t <= 2222) {
  y = -1.1063814 * Math.pow(x,3) - 1.34811020 * Math.pow(x,2) + 2.18555832 * x - 0.20219683;
} else if (t > 2222 && t <= 4000) {
  y = -0.9549476 * Math.pow(x,3) - 1.37418593 * Math.pow(x,2) + 2.09137015 * x - 0.16748867;
} else if (t > 4000 && t <= 25000) {
  y = 3.0817580 * Math.pow(x,3) - 5.87338670 * Math.pow(x,2) + 3.75112997 * x - 0.37001483;
}

xyY to XYZ (Y = 1)

enter image description here

enter image description here

// xyY to XYZ, Y = 1
var Y = (y == 0)? 0 : 1;
var X = (y == 0)? 0 : (x * Y) / y;
var Z = (y == 0)? 0 : ((1 - x - y) * Y) / y;

XYZ to RGB

enter image description here

var r = 0.41847 * X - 0.15866 * Y - 0.082835 * Z;
var g = -0.091169 * X + 0.25243 * Y + 0.015708 * Z;
var b = 0.00092090 * X - 0.0025498 * Y + 0.17860 * Z;

Question

I ran this algorithm with the B-V color indexes: 1.2, 1.0, 0.59, 0.0, -0.29. This is what I got as output.

enter image description here

Why did I get this strange output? Hot stars are bluish but cold stars are brownish and there doesn't seem to be white/orange intermediate stars.

Update

Following on a comment by Ozan, it seemed like I was using a wrong matrix to convert XYZ to RGB. Since sRGB is the default color space on the web (or is it?), I'm now using the correct matrix followed by a gamma correction function (a = 0.055).

enter image description here

enter image description here

I now get this nice color ramp,

enter image description here

but there's still no red/violet at the extremities.

Demo

There's also a fiddle now that you can play with.

Update 2

If use a gamma of 0.5 and extend the range of B-V color indexes to be from 4.7 to -0.5, I get red at one extreme but still no violet. Here's the updated fiddle.

enter image description here

No correct solution

OTHER TIPS

I use tabled interpolation instead. Some years back I found this table somewhere:

     type     r   g   b    rrggbb        B-V

     O5(V)   155 176 255  #9bb0ff       -0.32 blue
     O6(V)   162 184 255  #a2b8ff
     O7(V)   157 177 255  #9db1ff
     O8(V)   157 177 255  #9db1ff
     O9(V)   154 178 255  #9ab2ff
   O9.5(V)   164 186 255  #a4baff
     B0(V)   156 178 255  #9cb2ff
   B0.5(V)   167 188 255  #a7bcff
     B1(V)   160 182 255  #a0b6ff
     B2(V)   160 180 255  #a0b4ff
     B3(V)   165 185 255  #a5b9ff
     B4(V)   164 184 255  #a4b8ff
     B5(V)   170 191 255  #aabfff
     B6(V)   172 189 255  #acbdff
     B7(V)   173 191 255  #adbfff
     B8(V)   177 195 255  #b1c3ff
     B9(V)   181 198 255  #b5c6ff
     A0(V)   185 201 255  #b9c9ff       0.00 White
     A1(V)   181 199 255  #b5c7ff
     A2(V)   187 203 255  #bbcbff
     A3(V)   191 207 255  #bfcfff
     A5(V)   202 215 255  #cad7ff
     A6(V)   199 212 255  #c7d4ff
     A7(V)   200 213 255  #c8d5ff
     A8(V)   213 222 255  #d5deff
     A9(V)   219 224 255  #dbe0ff
     F0(V)   224 229 255  #e0e5ff       0.31 yellowish
     F2(V)   236 239 255  #ecefff
     F4(V)   224 226 255  #e0e2ff
     F5(V)   248 247 255  #f8f7ff
     F6(V)   244 241 255  #f4f1ff
     F7(V)   246 243 255  #f6f3ff       0.50
     F8(V)   255 247 252  #fff7fc
     F9(V)   255 247 252  #fff7fc
     G0(V)   255 248 252  #fff8fc       0.59  Yellow
     G1(V)   255 247 248  #fff7f8
     G2(V)   255 245 242  #fff5f2
     G4(V)   255 241 229  #fff1e5
     G5(V)   255 244 234  #fff4ea
     G6(V)   255 244 235  #fff4eb
     G7(V)   255 244 235  #fff4eb
     G8(V)   255 237 222  #ffedde
     G9(V)   255 239 221  #ffefdd
     K0(V)   255 238 221  #ffeedd       0.82 Orange
     K1(V)   255 224 188  #ffe0bc
     K2(V)   255 227 196  #ffe3c4
     K3(V)   255 222 195  #ffdec3
     K4(V)   255 216 181  #ffd8b5
     K5(V)   255 210 161  #ffd2a1
     K7(V)   255 199 142  #ffc78e
     K8(V)   255 209 174  #ffd1ae
     M0(V)   255 195 139  #ffc38b       1.41 red
     M1(V)   255 204 142  #ffcc8e
     M2(V)   255 196 131  #ffc483
     M3(V)   255 206 129  #ffce81
     M4(V)   255 201 127  #ffc97f
     M5(V)   255 204 111  #ffcc6f
     M6(V)   255 195 112  #ffc370
     M8(V)   255 198 109  #ffc66d       2.00
  1. just interpolate the missing B-V indexes (linearly or better) before use
  2. then use linear interpolation to get RGB=f(B-V);
  3. find the closest two lines in table and interpolate between them ...

[edit1] heh just coincidentally come across this (original info I mentioned before)

[edit2] here is my approximation without any XYZ stuff

BV to RGB

So the BV index is from < -0.4 , 2.0 >

here is mine (C++) code for conversion:

//---------------------------------------------------------------------------
void bv2rgb(double &r,double &g,double &b,double bv)    // RGB <0,1> <- BV <-0.4,+2.0> [-]
    {
    double t;  r=0.0; g=0.0; b=0.0; if (bv<-0.4) bv=-0.4; if (bv> 2.0) bv= 2.0;
         if ((bv>=-0.40)&&(bv<0.00)) { t=(bv+0.40)/(0.00+0.40); r=0.61+(0.11*t)+(0.1*t*t); }
    else if ((bv>= 0.00)&&(bv<0.40)) { t=(bv-0.00)/(0.40-0.00); r=0.83+(0.17*t)          ; }
    else if ((bv>= 0.40)&&(bv<2.10)) { t=(bv-0.40)/(2.10-0.40); r=1.00                   ; }
         if ((bv>=-0.40)&&(bv<0.00)) { t=(bv+0.40)/(0.00+0.40); g=0.70+(0.07*t)+(0.1*t*t); }
    else if ((bv>= 0.00)&&(bv<0.40)) { t=(bv-0.00)/(0.40-0.00); g=0.87+(0.11*t)          ; }
    else if ((bv>= 0.40)&&(bv<1.60)) { t=(bv-0.40)/(1.60-0.40); g=0.98-(0.16*t)          ; }
    else if ((bv>= 1.60)&&(bv<2.00)) { t=(bv-1.60)/(2.00-1.60); g=0.82         -(0.5*t*t); }
         if ((bv>=-0.40)&&(bv<0.40)) { t=(bv+0.40)/(0.40+0.40); b=1.00                   ; }
    else if ((bv>= 0.40)&&(bv<1.50)) { t=(bv-0.40)/(1.50-0.40); b=1.00-(0.47*t)+(0.1*t*t); }
    else if ((bv>= 1.50)&&(bv<1.94)) { t=(bv-1.50)/(1.94-1.50); b=0.63         -(0.6*t*t); }
    }
//---------------------------------------------------------------------------

[Notes]

This BV color is blackbody of defined temperature illumination so this represents star color viewed from space relative with the star. For visually correct colors you have to add atmospheric scattering effects of our atmosphere and Doppler effect for fast mowing stars!!! for example our Sun is 'White' but after light scatter the color varies from red (near horizon) to yellow (near nadir ... noon)

In case you want to visually correct the color these QAs might help:

In case you need here are few conversion functions between temperature and BV:

//---------------------------------------------------------------------------
float bv2temp_K(float bv)   //  BV <-0.4,+2.0> [-] -> temp [ºK]
    {
    return              4600.0 * ((1.0 / ((0.92 * bv) + 1.7)) +(1.0 / ((0.92 * bv) + 0.62)) );
    }
//---------------------------------------------------------------------------
float bv2temp_C(float bv)   //  BV <-0.4,+2.0> [-] -> temp [ºC]
    {
    return (-272.15) + (4600.0 * ((1.0 / ((0.92 * bv) + 1.7)) +(1.0 / ((0.92 * bv) + 0.62)) ));
    }
//---------------------------------------------------------------------------
float temp_K2bv(float t)    //  BV <-0.4,+2.0> [-] <- temp [ºK]
    {
    float a,b,c,D;
    a=(0.8464*t);
    b=(2.1344*t)-8464.0;
    c=(1.0540*t)-10672.0;
    D=(b*b)-(4.0*a*c);
    if (D<0.0) D=0.0; else D=sqrt(D);
    return (-b+D)/(2.0*a);
//  return (-b-D)/(2.0*a);
    }
//---------------------------------------------------------------------------
float temp_C2bv(float t)    //  BV <-0.4,+2.0> [-] <- temp [ºC]
    {
    float a,b,c,D;
    t+=-272.15;
    a=(0.8464*t);
    b=(2.1344*t)-8464.0;
    c=(1.0540*t)-10672.0;
    D=(b*b)-(4.0*a*c);
    if (D<0.0) D=0.0; else D=sqrt(D);
    return (-b+D)/(2.0*a);
//  return (-b-D)/(2.0*a);
    }
//---------------------------------------------------------------------------

And here preview of the BV=f(temp[K]) dependency (screenshot from my test app):

BV=f(temp[K])

On top of this using approx search I managed also to obtain BV,temp from RGB color:

//---------------------------------------------------------------------------
typedef unsigned __int8  BYTE; // comment this out if you already have BYTEs
typedef unsigned __int32 DWORD; // comment this out if you already have DWORDs
const int _r=0; // channel order
const int _g=1;
const int _b=2;
const int _a=3;
union color
    {
    BYTE db[4]; // channel access
    DWORD dd;   // all 32 bit of color
//  TColor c;   // VCL/GDI color  (you can ignore this)
    };
//---------------------------------------------------------------------------
DWORD bv2rgb(float bv)      //  BV <-0.4,+2.0> [-] -> RGB(A) 32bit
    {
    color c;
    float r,g,b,t;
    r=0.0; g=0.0; b=0.0; if (bv<-0.3999999) bv=-0.3999999; if (bv> 2.0) bv= 2.0;
         if ((bv>=-0.40)&&(bv<0.00)) { t=(bv+0.40)/(0.00+0.40); r=0.61+(0.11*t)+(0.1*t*t); }
    else if ((bv>= 0.00)&&(bv<0.40)) { t=(bv-0.00)/(0.40-0.00); r=0.83+(0.17*t)          ; }
    else if ((bv>= 0.40)&&(bv<2.10)) { t=(bv-0.40)/(2.10-0.40); r=1.00                   ; }
         if ((bv>=-0.40)&&(bv<0.00)) { t=(bv+0.40)/(0.00+0.40); g=0.70+(0.07*t)+(0.1*t*t); }
    else if ((bv>= 0.00)&&(bv<0.40)) { t=(bv-0.00)/(0.40-0.00); g=0.87+(0.11*t)          ; }
    else if ((bv>= 0.40)&&(bv<1.60)) { t=(bv-0.40)/(1.60-0.40); g=0.98-(0.16*t)          ; }
    else if ((bv>= 1.60)&&(bv<2.00)) { t=(bv-1.60)/(2.00-1.60); g=0.82         -(0.5*t*t); }
         if ((bv>=-0.40)&&(bv<0.40)) { t=(bv+0.40)/(0.40+0.40); b=1.00                   ; }
    else if ((bv>= 0.40)&&(bv<1.50)) { t=(bv-0.40)/(1.50-0.40); b=1.00-(0.47*t)+(0.1*t*t); }
    else if ((bv>= 1.50)&&(bv<1.94)) { t=(bv-1.50)/(1.94-1.50); b=0.63         -(0.6*t*t); }
    r*=255.0; c.db[_r]=r;
    g*=255.0; c.db[_g]=g;
    b*=255.0; c.db[_b]=b;
              c.db[_a]=0;
    return c.dd;
    }
//---------------------------------------------------------------------------
float rgb2bv(DWORD rgb)     //  BV <-0.4,+2.0> [-] <- RGB(A) 32bit
    {
    int d,dd;
    union color c0,c1;
    approx bv; double e;
    c0.dd=rgb;
    for (bv.init(-0.4,2.0,0.1,3,&e);!bv.done;bv.step())
        {
        c1.dd=bv2rgb(bv.a);
        d=int(c0.db[_r])-int(c1.db[_r]); if (d<0) d=-d; dd =d;
        d=int(c0.db[_g])-int(c1.db[_g]); if (d<0) d=-d; dd+=d;
        d=int(c0.db[_b])-int(c1.db[_b]); if (d<0) d=-d; dd+=d;
        e=dd;
        }
    return bv.aa;
    }
//---------------------------------------------------------------------------

In case your pixelformat has different order of channels just change the _r,_g,_b,_a constants. However note that 24bpp RGB color precision leads to error up to ~300K on the edges of temp range, mid range 3169K .. 13000K has error up to ~50K so in order to gain better precision you need to use better color depth...

You asked for an algorithm, you will get one.

I researched this topic when I was rendering the data from the HYG database in Python3.5, with Pyglet and MongoDB. I'm happy with how my stars look in my starmap. The colors can be found at the bottom of this answer.

1. Color Index (B-V) to Temperature (K)

This is the function I used on the B-V (ci) data from the HYG database. In this example, ci is a B-V value from a list I'm running through.

    temp = 4600 * (1 / (0.92 * ci + 1.7) + 1 / (0.92 * ci + 0.62))

2. Get a big table.

I took this one and I suggest you do too. Select the temperature column and the RGB or rgb values column as reference

3. Preprocess the data.

From the rgb table data, I generated three ordered lists (n=391) (my method: cleanup and selection with spreadsheet software and a text editor capable of having millions of cursors at a time, then imported the resulting comma-separated file by mongoDB so I could easily work with the lists of values in python through the pymongo wrapper, without too much clutter in the script file). The benefit of the method I will be laying out is that you can pluck color data from other tables that might use CMYK or HSV and adapt accordingly. You could even cross-reference. However, you should end up with lists that look like this from the (s)RGB table I suggested;

    reds = [255, 255, ... , 155, 155]
    greens = [56, 71, ..., 188,188]
    blues = [0, 0, ..., 255, 255]

    """ this temps list is also (n=391) and corresponds to the table values."""
    temps = []
    for i in range(1000,40100,100):
        temps.append(i)

After this, I've applied some Gaussian smoothing to these lists (it helps to get better polynomials, since it gets rid of some fluctuation), after which I applied the polyfit() method (polynomial regression) from the numpy package to the temperature values with respect to the R, G and B values:

colors = [reds,greens,blues]

""" you can tweak the degree value to see if you can get better coeffs. """
def smoothListGaussian2(myarray, degree=3):
    myarray = np.pad(myarray, (degree-1,degree-1), mode='edge')
    window=degree*2-1
    weight=np.arange(-degree+1, degree)/window
    weight = np.exp(-(16*weight**2))
    weight /= sum(weight)
    smoothed = np.convolve(myarray, weight, mode='valid')
    return smoothed

i=0

for color in colors:

    color = smoothListGaussian2(color)
    x = np.array(temps)
    y = np.array(color)

    names = ["reds","greens","blues"]
    """ raise/lower the k value (third one) in c """
    z = np.polyfit(x, y, 20)
    f = np.poly1d(z)
    #plt.plot(x,f(x),str(names[i][0]+"-"))
    print("%sPoly = " % names[i], z)

    i += 1
plt.show()

That gives you (n) coefficients (a) for polynomials of form:

enter image description here.

Come to think of it now, you could probably use polyfit to come up with the coefficients to convert CI straight to RGB... and skip the CI to temperature conversion step, but by converting to temp first, the relation between temperature and the chosen color space is more clear.

4. The actual Algorithm: Plug temperature values into the RGB polynomials

As I said before, you can use other spectral data and other color spaces to fit polynomial curves to, this step would still be the same (with slight modifications)

Anyway, here's the simple code in full that I used (also, this is with k=20 polynomials):

import numpy as np

redco = [ 1.62098281e-82, -5.03110845e-77, 6.66758278e-72, -4.71441850e-67, 1.66429493e-62, -1.50701672e-59, -2.42533006e-53, 8.42586475e-49, 7.94816523e-45, -1.68655179e-39, 7.25404556e-35, -1.85559350e-30, 3.23793430e-26, -4.00670131e-22, 3.53445102e-18, -2.19200432e-14, 9.27939743e-11, -2.56131914e-07,  4.29917840e-04, -3.88866019e-01, 3.97307766e+02]
greenco = [ 1.21775217e-82, -3.79265302e-77, 5.04300808e-72, -3.57741292e-67, 1.26763387e-62, -1.28724846e-59, -1.84618419e-53, 6.43113038e-49, 6.05135293e-45, -1.28642374e-39, 5.52273817e-35, -1.40682723e-30, 2.43659251e-26, -2.97762151e-22, 2.57295370e-18, -1.54137817e-14, 6.14141996e-11, -1.50922703e-07,  1.90667190e-04, -1.23973583e-02,-1.33464366e+01]
blueco = [ 2.17374683e-82, -6.82574350e-77, 9.17262316e-72, -6.60390151e-67, 2.40324203e-62, -5.77694976e-59, -3.42234361e-53, 1.26662864e-48, 8.75794575e-45, -2.45089758e-39, 1.10698770e-34, -2.95752654e-30, 5.41656027e-26, -7.10396545e-22, 6.74083578e-18, -4.59335728e-14, 2.20051751e-10, -7.14068799e-07,  1.46622559e-03, -1.60740964e+00, 6.85200095e+02]

redco = np.poly1d(redco)
greenco = np.poly1d(greenco)
blueco = np.poly1d(blueco)

def temp2rgb(temp):

    red = redco(temp)
    green = greenco(temp)
    blue = blueco(temp)

    if red > 255:
        red = 255
    elif red < 0:
        red = 0
    if green > 255:
        green = 255
    elif green < 0:
        green = 0
    if blue > 255:
        blue = 255
    elif blue < 0:
        blue = 0

    color = (int(red),
             int(green),
             int(blue))
    print(color)
    return color

Oh, and some more notes and imagery...

The OBAFGKM black body temperature scale from my polynomials:

enter image description here

The plot for RGB [0-255] over temp [0-40000K],

  • + : table data
  • curves : polynomial fit enter image description here A zoom-in on the least-fidelity values: enter image description here

Here's the purple

As you can see, there's some deviation, but it is hardly noticeable with the naked eye and if you really want to improve on it (I don't), you have some other options:

  1. Divide the lists where the green value is highest and see if you get better polynomials for the new left and right parts of the lists. A bit like this:

Corrective Measures.

  1. Write exception rules (maybe a simple k=2 or k=3 poly) for the values in this least-fidelity window.
  2. Try other smoothing algorithms before you polyfit().
  3. Try other sources or color spaces.

I'm also happy with the overall performance of my polynomials. When I'm loading the ~120000 star objects of my starmap with at minimum 18 colored vertices each, it only takes a few seconds, much to my surprise. There is room for improvement, however. For a more realistic view (instead of just running with the blackbody light radiation), I could add gravitational lensing, atmospheric effects, relativistic doppler, etc...

Oh, and the PURPLE, as promised.

Some other useful links:

Just in case anybody else needs to convert the handy C++ of @Spektre to python. I have taken some of the duplication out (that the compiler would no doubt have fixed) and the discontinuities for g when bv>=2.0 and b when 1.94<bv<1.9509

def bv2rgb(bv):
  if bv < -0.4: bv = -0.4
  if bv > 2.0: bv = 2.0
  if bv >= -0.40 and bv < 0.00:
    t = (bv + 0.40) / (0.00 + 0.40)
    r = 0.61 + 0.11 * t + 0.1 * t * t
    g = 0.70 + 0.07 * t + 0.1 * t * t
    b = 1.0
  elif bv >= 0.00 and bv < 0.40:
    t = (bv - 0.00) / (0.40 - 0.00)
    r = 0.83 + (0.17 * t)
    g = 0.87 + (0.11 * t)
    b = 1.0
  elif bv >= 0.40 and bv < 1.60:
    t = (bv - 0.40) / (1.60 - 0.40)
    r = 1.0
    g = 0.98 - 0.16 * t
  else:
    t = (bv - 1.60) / (2.00 - 1.60)
    r = 1.0
    g = 0.82 - 0.5 * t * t
  if bv >= 0.40 and bv < 1.50:
    t = (bv - 0.40) / (1.50 - 0.40)
    b = 1.00 - 0.47 * t + 0.1 * t * t
  elif bv >= 1.50 and bv < 1.951:
    t = (bv - 1.50) / (1.94 - 1.50)
    b = 0.63 - 0.6 * t * t
  else:
    b = 0.0
  return (r, g, b)

As a correction to the code of @paddyg, which did not work for me (especially for color with bv < 0.4) : here is the exact same version of the C++ code of @Spektre, in Python :

def bv2rgb(bv):
    if bv < -0.40: bv = -0.40
    if bv > 2.00: bv = 2.00

    r = 0.0
    g = 0.0
    b = 0.0

    if  -0.40 <= bv<0.00:
        t=(bv+0.40)/(0.00+0.40)
        r=0.61+(0.11*t)+(0.1*t*t)
    elif 0.00 <= bv<0.40:
        t=(bv-0.00)/(0.40-0.00)
        r=0.83+(0.17*t)
    elif 0.40 <= bv<2.10:
        t=(bv-0.40)/(2.10-0.40)
        r=1.00
    if  -0.40 <= bv<0.00:
        t=(bv+0.40)/(0.00+0.40)
        g=0.70+(0.07*t)+(0.1*t*t)
    elif 0.00 <= bv<0.40:
        t=(bv-0.00)/(0.40-0.00)
        g=0.87+(0.11*t)
    elif 0.40 <= bv<1.60:
        t=(bv-0.40)/(1.60-0.40)
        g=0.98-(0.16*t)
    elif 1.60 <= bv<2.00:
        t=(bv-1.60)/(2.00-1.60)
        g=0.82-(0.5*t*t)
    if  -0.40 <= bv<0.40:
        t=(bv+0.40)/(0.40+0.40)
        b=1.00
    elif 0.40 <= bv<1.50:
        t=(bv-0.40)/(1.50-0.40)
        b=1.00-(0.47*t)+(0.1*t*t)
    elif 1.50 <= bv<1.94:
        t=(bv-1.50)/(1.94-1.50)
        b=0.63-(0.6*t*t)

    return (r, g, b)

@Spektre's answer in Swift 3.0:

private func bv2ToRGB(for bv: CGFloat, logging: Bool = false) -> Color {
    var bv = bv
    var t: CGFloat = 0
    var r: CGFloat = 0
    var g: CGFloat = 0
    var b: CGFloat = 0

    if bv < -0.4 { bv = -0.4}
    if bv > 2.0 { bv = 2.0}

    switch bv {
    case -0.4 ... 0.0:
        t = (bv+0.40)/(0.00+0.40)
        r = 0.61+(0.11*t)+(0.1*t*t)
    case 0.0 ... 0.4:
        t = (bv-0.00)/(0.40-0.00)
        r = 0.83+(0.17*t)
    case 0.4 ... 2.1:
        t = (bv-0.40)/(2.10-0.40)
        r = 1.00
    default: break
    }

    switch bv {
    case -0.4 ... 0.0:
        t = (bv+0.40)/(0.00+0.40)
        g = 0.70 + (0.07*t)+(0.1*t*t)
    case 0.0 ... 0.4:
        t = (bv-0.00)/(0.40-0.00)
        g = 0.87 + (0.11*t)
    case 0.4 ... 1.6:
        t = (bv-0.40)/(1.60-0.40)
        g = 0.98 - (0.16*t)
    case 1.6 ... 2.0:
        t = (bv-1.60)/(2.00-1.60)
        g = 0.82         - (0.5*t*t)
    default: break
    }

    switch bv {
    case -0.4 ... 0.4:
        t = (bv+0.40)/(0.40+0.40)
        b = 1.0
    case 0.4 ... 1.5:
        t = (bv-0.40)/(1.50-0.40)
        b = 1.00 - (0.47*t)+(0.1*t*t)
    case 1.5 ... 1.94:
        t = (bv-1.50)/(1.94-1.50)
        b = 0.63         - (0.6*t*t)
    default: break
    }

    #if os(OSX)
        return NSColor(calibratedRed: r, green: g, blue: b, alpha: 1.0)
    #else
        return UIColor(red: r, green: g, blue: b, alpha: 1.0)
    #endif
}

Why no violet or deep blue? Infinite color temperature, before being made less bluish by our atmosphere, has 1931 CIE coordinates of X=.240, y=.234.

The spectrum of a blackbody at infinite color temperature has spectral power distribution, in power per unit wavelength of bandwidth, being inversely proportional to wavelength to the 4th power. At 700nm, this is 10.7% as great as at 400nm.

In answer to the question why no violet? : I think the answer is that stars just aren't that colour. Or rather, they are not rendered that colour when we take pictures of them. The colours produced on this thread for various temperatures / B-V values seem pretty accurate to me. Take this picture I took of Albireo in Cygnus: https://www.flickr.com/photos/30974264@N02/6939409750/in/photolist-bB54th-bzdhKG Albireo A (left) is a K type star with a B-V of 1.074 and Alberio B (right) is a B type star with a B-V of -0.06. Looking at the colours in the charts above for those B-V values, I'd say there's a pretty strong correlation with the picture. Also, don't forget that even for very hot stars, there will still be some output at longer wavelengths, which will tend to desaturate the "blueness". Black-body radiation is broad spectrum.

Also based on the list (http://www.vendian.org/mncharity/dir3/blackbody/UnstableURLs/bbr_color.html) the following function uses kotlin to get a color for a temperature based on the 2deg scale:

fun getColorForTemp(temp: Int) = when (temp) {
  in 0..1000 -> -52480
  in 1000..1100 -> -52480
  in 1100..1200 -> -47872
  in 1200..1300 -> -44544
  in 1300..1400 -> -41728
  in 1400..1500 -> -39424
  in 1500..1600 -> -37120
  in 1600..1700 -> -35328
  in 1700..1800 -> -33792
  in 1800..1900 -> -32256
  in 1900..2000 -> -30976
  in 2000..2100 -> -29429
  in 2100..2200 -> -28131
  in 2200..2300 -> -26583
  in 2300..2400 -> -25293
  in 2400..2500 -> -24004
  in 2500..2600 -> -22971
  in 2600..2700 -> -21939
  in 2700..2800 -> -20908
  in 2800..2900 -> -19877
  in 2900..3000 -> -18846
  in 3000..3100 -> -18071
  in 3100..3200 -> -17041
  in 3200..3300 -> -16266
  in 3300..3400 -> -15492
  in 3400..3500 -> -14718
  in 3500..3600 -> -13945
  in 3600..3700 -> -13427
  in 3700..3800 -> -12654
  in 3800..3900 -> -12137
  in 3900..4000 -> -11364
  in 4000..4100 -> -10847
  in 4100..4200 -> -10330
  in 4200..4300 -> -9813
  in 4300..4400 -> -9297
  in 4400..4500 -> -8780
  in 4500..4600 -> -8264
  in 4600..4700 -> -7748
  in 4700..4800 -> -7488
  in 4800..4900 -> -6972
  in 4900..5000 -> -6712
  in 5000..5100 -> -6196
  in 5100..5200 -> -5936
  in 5200..5300 -> -5421
  in 5300..5400 -> -5161
  in 5400..5500 -> -4646
  in 5500..5600 -> -4386
  in 5600..5700 -> -4127
  in 5700..5800 -> -3868
  in 5800..5900 -> -3609
  in 5900..6000 -> -3094
  in 6000..6100 -> -2835
  in 6100..6200 -> -2576
  in 6200..6300 -> -2317
  in 6300..6400 -> -2059
  in 6400..6500 -> -1800
  in 6500..6600 -> -1541
  in 6600..6700 -> -1539
  in 6700..6800 -> -66817
  in 6800..6900 -> -198401
  in 6900..7000 -> -329729
  in 7000..7100 -> -526849
  in 7100..7200 -> -658177
  in 7200..7300 -> -789505
  in 7300..7400 -> -921089
  in 7400..7500 -> -1052417
  in 7500..7600 -> -1118209
  in 7600..7700 -> -1249537
  in 7700..7800 -> -1380865
  in 7800..7900 -> -1446657
  in 7900..8000 -> -1578241
  in 8000..8100 -> -1709569
  in 8100..8200 -> -1775105
  in 8200..8300 -> -1840897
  in 8300..8400 -> -1972225
  in 8400..8500 -> -2038017
  in 8500..8600 -> -2103809
  in 8600..8700 -> -2235137
  in 8700..8800 -> -2300929
  in 8800..8900 -> -2366721
  in 8900..9000 -> -2432257
  in 9000..9100 -> -2498049
  in 9100..9200 -> -2563841
  in 9200..9300 -> -2629633
  in 9300..9400 -> -2695169
  in 9400..9500 -> -2760961
  in 9500..9600 -> -2826753
  in 9600..9700 -> -2892289
  in 9700..9800 -> -2958081
  in 9800..9900 -> -3023617
  in 9900..10000 -> -3089409
  in 10000..10200 -> -3155201
  in 10200..10300 -> -3220993
  in 10300..10400 -> -3286529
  in 10400..10600 -> -3352321
  in 10600..10700 -> -3418113
  in 10700..10800 -> -3483649
  in 10800..10900 -> -3483905
  in 10900..11000 -> -3549441
  in 11000..11200 -> -3615233
  in 11200..11300 -> -3681025
  in 11300..11500 -> -3746561
  in 11500..11700 -> -3812353
  in 11700..11900 -> -3878145
  in 11900..12000 -> -3943681
  in 12000..12100 -> -3943937
  in 12100..12200 -> -4009473
  in 12200..12300 -> -4009729
  in 12300..12500 -> -4075265
  in 12500..12700 -> -4141057
  in 12700..12800 -> -4206593
  in 12800..12900 -> -4206849
  in 12900..13200 -> -4272385
  in 13200..13400 -> -4338177
  in 13400..13500 -> -4403713
  in 13500..13700 -> -4403969
  in 13700..13900 -> -4469505
  in 13900..14000 -> -4469761
  in 14000..14300 -> -4535297
  in 14300..14600 -> -4601089
  in 14600..14700 -> -4666625
  in 14700..15000 -> -4666881
  in 15000..15200 -> -4732417
  in 15200..15300 -> -4732673
  in 15300..15700 -> -4798209
  in 15700..16100 -> -4864001
  in 16100..16200 -> -4929537
  in 16200..16500 -> -4929793
  in 16500..16800 -> -4995329
  in 16800..17000 -> -4995585
  in 17000..17400 -> -5061121
  in 17400..17500 -> -5061377
  in 17500..18000 -> -5126913
  in 18000..18100 -> -5192449
  in 18100..18600 -> -5192705
  in 18600..18800 -> -5258241
  in 18800..19200 -> -5258497
  in 19200..19700 -> -5324033
  in 19700..19900 -> -5324289
  in 19900..20600 -> -5389825
  in 20600..20700 -> -5390081
  in 20700..21500 -> -5455617
  in 21500..21700 -> -5521153
  in 21700..22400 -> -5521409
  in 22400..22800 -> -5586945
  in 22800..23400 -> -5587201
  in 23400..24200 -> -5652737
  in 24200..24500 -> -5652993
  in 24500..25700 -> -5718529
  in 25700..27100 -> -5784321
  in 27100..27400 -> -5849857
  in 27400..28700 -> -5850113
  in 28700..29500 -> -5915649
  in 29500..30600 -> -5915905
  in 30600..32000 -> -5981441
  in 32000..32700 -> -5981697
  in 32700..35000 -> -6047233
  in 35000..35200 -> -6047489
  in 35200..38300 -> -6113025
  in 38300..38600 -> -6178561
  in 38600..40000 -> -6178817
  else -> -6178817
}
Licensed under: CC-BY-SA with attribution
Not affiliated with StackOverflow
scroll top