Pregunta

Tengo un conjunto de números enteros. Quiero encontrar el más larga aumentar subsecuencia de ese conjunto mediante programación dinámica.

¿Fue útil?

Solución

OK, describiré primero la solución más simple, que es O (N ^ 2), donde N es el tamaño de la colección. También existe una O solución (N log N), que describiré también. Mirada aquí por ello en la sección de algoritmos eficientes.

I asumirá los índices de la matriz son de 0 a N - 1. Por lo tanto vamos a definir DP[i] a ser la longitud de la LIS (Mayor aumento de subsecuencia) que está llegando a su fin en el elemento con el índice i. Para DP[i] de cómputo nos fijamos en todos los índices j < i y comprobar tanto si DP[j] + 1 > DP[i] y array[j] < array[i] (nosotros queremos que sea mayor). Si esto es cierto que puede actualizar la óptima actual para DP[i]. Para encontrar el óptimo global para la matriz se puede tomar el máximo valor de DP[0...N - 1].

int maxLength = 1, bestEnd = 0;
DP[0] = 1;
prev[0] = -1;

for (int i = 1; i < N; i++)
{
   DP[i] = 1;
   prev[i] = -1;

   for (int j = i - 1; j >= 0; j--)
      if (DP[j] + 1 > DP[i] && array[j] < array[i])
      {
         DP[i] = DP[j] + 1;
         prev[i] = j;
      }

   if (DP[i] > maxLength)
   {
      bestEnd = i;
      maxLength = DP[i];
   }
}

Yo uso el prev matriz para poder más tarde para encontrar la secuencia real no sólo de su longitud. Sólo tiene que ir hacia atrás de forma recursiva a partir bestEnd en un bucle que utiliza prev[bestEnd]. El valor -1 es una señal de parada.


OK, ahora a la solución más eficiente O(N log N):

Let S[pos] puede definir como el número entero más pequeño que los extremos una secuencia creciente de longitud pos. Ahora iterar a través de cada X entero del conjunto de entrada y hacer lo siguiente:

  1. Si X> último elemento de S, tiene que poner X hasta el final de S. Este medio de essentialy que han encontrado un nuevo LIS más grande.

  2. De lo contrario encontrar el elemento más pequeño en S, que es >= que X, y el cambio a X. Debido S está ordenada en cualquier momento, el elemento se puede encontrar mediante la búsqueda binaria en log(N).

Total de tiempo de ejecución - enteros N y una búsqueda binaria para cada uno de ellos - N * log (N) = O (N log N)

Ahora vamos a hacer un ejemplo real:

Colección de enteros: 2 6 3 4 1 2 9 5 8

pasos:

0. S = {} - Initialize S to the empty set
1. S = {2} - New largest LIS
2. S = {2, 6} - New largest LIS
3. S = {2, 3} - Changed 6 to 3
4. S = {2, 3, 4} - New largest LIS
5. S = {1, 3, 4} - Changed 2 to 1
6. S = {1, 2, 4} - Changed 3 to 2
7. S = {1, 2, 4, 9} - New largest LIS
8. S = {1, 2, 4, 5} - Changed 9 to 5
9. S = {1, 2, 4, 5, 8} - New largest LIS

Así la longitud de la LIS es 5 (el tamaño de S).

Para reconstruir el LIS real volveremos a utilizar una matriz matriz. Deje parent[i] ser el antecesor del elemento con la i índice en el LIS que termina en el elemento con el índice i.

Para hacer las cosas más simples, podemos mantener en el S matriz, no los números enteros reales, pero sus índices (posiciones) en el conjunto. No mantenemos {1, 2, 4, 5, 8}, pero mantenemos {4, 5, 3, 7, 8}.

Eso es de entrada [4] = 1 , de entrada [5] = 2 , de entrada [3] = 4 , de entrada [7 ] = 5 , de entrada [8] = 8 .

Si actualizamos adecuadamente la matriz de los padres, el LIS real es:

input[S[lastElementOfS]], 
input[parent[S[lastElementOfS]]],
input[parent[parent[S[lastElementOfS]]]],
........................................

Ahora que lo importante - ¿cómo actualizar la matriz de los padres? Hay dos opciones:

  1. Si X> último elemento de S, entonces parent[indexX] = indexLastElement. Esto significa que el padre del elemento más reciente es el último elemento. Nos X simplemente escriba a finales de S.

  2. De lo contrario encontrar el índice del elemento más pequeño de S, que es >= que X, y el cambio a X. Aquí parent[indexX] = S[index - 1].

Otros consejos

La explicación de Petar Minchev ayudó a aclarar las cosas para mí, pero era difícil para mí para analizar lo era todo, así que hice una implementación de Python con los nombres de variables excesivamente descriptivos y un montón de comentarios. Hice una solución recursiva ingenuo, el O (n ^ 2) solución, y la O (n log n) solución.

Espero que ayude a aclarar los algoritmos!

La solución recursiva

def recursive_solution(remaining_sequence, bigger_than=None):
    """Finds the longest increasing subsequence of remaining_sequence that is      
    bigger than bigger_than and returns it.  This solution is O(2^n)."""

    # Base case: nothing is remaining.                                             
    if len(remaining_sequence) == 0:
        return remaining_sequence

    # Recursive case 1: exclude the current element and process the remaining.     
    best_sequence = recursive_solution(remaining_sequence[1:], bigger_than)

    # Recursive case 2: include the current element if it's big enough.            
    first = remaining_sequence[0]

    if (first > bigger_than) or (bigger_than is None):

        sequence_with = [first] + recursive_solution(remaining_sequence[1:], first)

        # Choose whichever of case 1 and case 2 were longer.                         
        if len(sequence_with) >= len(best_sequence):
            best_sequence = sequence_with

    return best_sequence                                                        

La O (n ^ 2) Programación Dinámica Solución

def dynamic_programming_solution(sequence):
    """Finds the longest increasing subsequence in sequence using dynamic          
    programming.  This solution is O(n^2)."""

    longest_subsequence_ending_with = []
    backreference_for_subsequence_ending_with = []
    current_best_end = 0

    for curr_elem in range(len(sequence)):
        # It's always possible to have a subsequence of length 1.                    
        longest_subsequence_ending_with.append(1)

        # If a subsequence is length 1, it doesn't have a backreference.             
        backreference_for_subsequence_ending_with.append(None)

        for prev_elem in range(curr_elem):
            subsequence_length_through_prev = (longest_subsequence_ending_with[prev_elem] + 1)

            # If the prev_elem is smaller than the current elem (so it's increasing)   
            # And if the longest subsequence from prev_elem would yield a better       
            # subsequence for curr_elem.                                               
            if ((sequence[prev_elem] < sequence[curr_elem]) and
                    (subsequence_length_through_prev >
                         longest_subsequence_ending_with[curr_elem])):

                # Set the candidate best subsequence at curr_elem to go through prev.    
                longest_subsequence_ending_with[curr_elem] = (subsequence_length_through_prev)
                backreference_for_subsequence_ending_with[curr_elem] = prev_elem
                # If the new end is the best, update the best.    

        if (longest_subsequence_ending_with[curr_elem] >
                longest_subsequence_ending_with[current_best_end]):
            current_best_end = curr_elem
            # Output the overall best by following the backreferences.  

    best_subsequence = []
    current_backreference = current_best_end

    while current_backreference is not None:
        best_subsequence.append(sequence[current_backreference])
        current_backreference = (backreference_for_subsequence_ending_with[current_backreference])

    best_subsequence.reverse()

    return best_subsequence                                                   

La O (n log n) Programación Dinámica Solución

def find_smallest_elem_as_big_as(sequence, subsequence, elem):
    """Returns the index of the smallest element in subsequence as big as          
    sequence[elem].  sequence[elem] must not be larger than every element in       
    subsequence.  The elements in subsequence are indices in sequence.  Uses       
    binary search."""

    low = 0
    high = len(subsequence) - 1

    while high > low:
        mid = (high + low) / 2
        # If the current element is not as big as elem, throw out the low half of    
        # sequence.                                                                  
        if sequence[subsequence[mid]] < sequence[elem]:
            low = mid + 1
            # If the current element is as big as elem, throw out everything bigger, but 
        # keep the current element.                                                  
        else:
            high = mid

    return high


def optimized_dynamic_programming_solution(sequence):
    """Finds the longest increasing subsequence in sequence using dynamic          
    programming and binary search (per                                             
    http://en.wikipedia.org/wiki/Longest_increasing_subsequence).  This solution   
    is O(n log n)."""

    # Both of these lists hold the indices of elements in sequence and not the        
    # elements themselves.                                                         
    # This list will always be sorted.                                             
    smallest_end_to_subsequence_of_length = []

    # This array goes along with sequence (not                                     
    # smallest_end_to_subsequence_of_length).  Following the corresponding element 
    # in this array repeatedly will generate the desired subsequence.              
    parent = [None for _ in sequence]

    for elem in range(len(sequence)):
        # We're iterating through sequence in order, so if elem is bigger than the   
        # end of longest current subsequence, we have a new longest increasing          
        # subsequence.                                                               
        if (len(smallest_end_to_subsequence_of_length) == 0 or
                    sequence[elem] > sequence[smallest_end_to_subsequence_of_length[-1]]):
            # If we are adding the first element, it has no parent.  Otherwise, we        
            # need to update the parent to be the previous biggest element.            
            if len(smallest_end_to_subsequence_of_length) > 0:
                parent[elem] = smallest_end_to_subsequence_of_length[-1]
            smallest_end_to_subsequence_of_length.append(elem)
        else:
            # If we can't make a longer subsequence, we might be able to make a        
            # subsequence of equal size to one of our earlier subsequences with a         
            # smaller ending number (which makes it easier to find a later number that 
            # is increasing).                                                          
            # Thus, we look for the smallest element in                                
            # smallest_end_to_subsequence_of_length that is at least as big as elem       
            # and replace it with elem.                                                
            # This preserves correctness because if there is a subsequence of length n 
            # that ends with a number smaller than elem, we could add elem on to the   
            # end of that subsequence to get a subsequence of length n+1.              
            location_to_replace = find_smallest_elem_as_big_as(sequence, smallest_end_to_subsequence_of_length, elem)
            smallest_end_to_subsequence_of_length[location_to_replace] = elem
            # If we're replacing the first element, we don't need to update its parent 
            # because a subsequence of length 1 has no parent.  Otherwise, its parent  
            # is the subsequence one shorter, which we just added onto.                
            if location_to_replace != 0:
                parent[elem] = (smallest_end_to_subsequence_of_length[location_to_replace - 1])

    # Generate the longest increasing subsequence by backtracking through parent.  
    curr_parent = smallest_end_to_subsequence_of_length[-1]
    longest_increasing_subsequence = []

    while curr_parent is not None:
        longest_increasing_subsequence.append(sequence[curr_parent])
        curr_parent = parent[curr_parent]

    longest_increasing_subsequence.reverse()

    return longest_increasing_subsequence         

Al hablar de solución de DP, me pareció sorprendente que nadie mencionó el hecho de que LIS se puede reducir a LCS . Todo lo que necesita hacer es ordenar la copia de la secuencia original, eliminar todos los duplicados y hacer LCS de ellos. En pseudocódigo es:

def LIS(S):
    T = sort(S)
    T = removeDuplicates(T)
    return LCS(S, T)

Y la plena aplicación escrita en Ir. No es necesario para mantener la matriz de toda ^ n 2 DP si no es necesario reconstruir la solución.

func lcs(arr1 []int) int {
    arr2 := make([]int, len(arr1))
    for i, v := range arr1 {
        arr2[i] = v
    }
    sort.Ints(arr1)
    arr3 := []int{}
    prev := arr1[0] - 1
    for _, v := range arr1 {
        if v != prev {
            prev = v
            arr3 = append(arr3, v)
        }
    }

    n1, n2 := len(arr1), len(arr3)

    M := make([][]int, n2 + 1)
    e := make([]int, (n1 + 1) * (n2 + 1))
    for i := range M {
        M[i] = e[i * (n1 + 1):(i + 1) * (n1 + 1)]
    }

    for i := 1; i <= n2; i++ {
        for j := 1; j <= n1; j++ {
            if arr2[j - 1] == arr3[i - 1] {
                M[i][j] = M[i - 1][j - 1] + 1
            } else if M[i - 1][j] > M[i][j - 1] {
                M[i][j] = M[i - 1][j]
            } else {
                M[i][j] = M[i][j - 1]
            }
        }
    }

    return M[n2][n1]
}

La siguiente aplicación C ++ incluye también un código que construye el real más larga subsecuencia creciente utilizando una matriz llamada prev.

std::vector<int> longest_increasing_subsequence (const std::vector<int>& s)
{
    int best_end = 0;
    int sz = s.size();

    if (!sz)
        return std::vector<int>();

    std::vector<int> prev(sz,-1);
    std::vector<int> memo(sz, 0);

    int max_length = std::numeric_limits<int>::min();

    memo[0] = 1;

    for ( auto i = 1; i < sz; ++i)
    {
        for ( auto j = 0; j < i; ++j)
        {
            if ( s[j] < s[i] && memo[i] < memo[j] + 1 )
            {
                memo[i] =  memo[j] + 1;
                prev[i] =  j;
            }
        }

        if ( memo[i] > max_length ) 
        {
            best_end = i;
            max_length = memo[i];
        }
    }

    // Code that builds the longest increasing subsequence using "prev"
    std::vector<int> results;
    results.reserve(sz);

    std::stack<int> stk;
    int current = best_end;

    while (current != -1)
    {
        stk.push(s[current]);
        current = prev[current];
    }

    while (!stk.empty())
    {
        results.push_back(stk.top());
        stk.pop();
    }

    return results;
}

Implementación sin pila simplemente invertir el vector

#include <iostream>
#include <vector>
#include <limits>
std::vector<int> LIS( const std::vector<int> &v ) {
  auto sz = v.size();
  if(!sz)
    return v;
  std::vector<int> memo(sz, 0);
  std::vector<int> prev(sz, -1);
  memo[0] = 1;
  int best_end = 0;
  int max_length = std::numeric_limits<int>::min();
  for (auto i = 1; i < sz; ++i) {
    for ( auto j = 0; j < i ; ++j) {
      if (s[j] < s[i] && memo[i] < memo[j] + 1) {
        memo[i] = memo[j] + 1;
        prev[i] = j;
      }
    }
    if(memo[i] > max_length) {
      best_end = i;
      max_length = memo[i];
    }
  }

  // create results
  std::vector<int> results;
  results.reserve(v.size());
  auto current = best_end;
  while (current != -1) {
    results.push_back(s[current]);
    current = prev[current];
  }
  std::reverse(results.begin(), results.end());
  return results;
}

Aquí hay tres pasos para evaluar el problema desde el punto de vista de la programación dinámica:

  1. Recurrencia definición: maxLength (i) == 1 + maxLength (j) donde 0 array [j]
  2. Recurrencia parámetro límite: puede ser de 0 a i - 1 subsecuencias pasados ??como un parametro
  3. orden
  4. Evaluación: ya que está aumentando sub-secuencia, que tiene que ser evaluado de 0 a n

Si tomamos como una secuencia de ejemplo {0, 8, 2, 3, 7, 9}, en el índice:

  • [0] nos pondremos subsecuencia {0} como un caso base
  • [1] tenemos 1 nueva subsecuencia {0, 8}
  • [2] se trata de evaluar dos nuevas secuencias de {0, 8, 2} y {0, 2} por la adición de elemento en el índice 2 a sub-secuencias existentes - sólo una es válida, por lo que añadir tercera secuencia posible {0, 2} solamente a la lista de parámetros ...

Aquí está el C ++ de trabajo 11 código:

#include <iostream>
#include <vector>

int getLongestIncSub(const std::vector<int> &sequence, size_t index, std::vector<std::vector<int>> &sub) {
    if(index == 0) {
        sub.push_back(std::vector<int>{sequence[0]});
        return 1;
    }

    size_t longestSubSeq = getLongestIncSub(sequence, index - 1, sub);
    std::vector<std::vector<int>> tmpSubSeq;
    for(std::vector<int> &subSeq : sub) {
        if(subSeq[subSeq.size() - 1] < sequence[index]) {
            std::vector<int> newSeq(subSeq);
            newSeq.push_back(sequence[index]);
            longestSubSeq = std::max(longestSubSeq, newSeq.size());
            tmpSubSeq.push_back(newSeq);
        }
    }
    std::copy(tmpSubSeq.begin(), tmpSubSeq.end(),
              std::back_insert_iterator<std::vector<std::vector<int>>>(sub));

    return longestSubSeq;
}

int getLongestIncSub(const std::vector<int> &sequence) {
    std::vector<std::vector<int>> sub;
    return getLongestIncSub(sequence, sequence.size() - 1, sub);
}

int main()
{
    std::vector<int> seq{0, 8, 2, 3, 7, 9};
    std::cout << getLongestIncSub(seq);
    return 0;
}

Aquí es una implementación Scala de la O (n ^ 2) algoritmo:

object Solve {
  def longestIncrSubseq[T](xs: List[T])(implicit ord: Ordering[T]) = {
    xs.foldLeft(List[(Int, List[T])]()) {
      (sofar, x) =>
        if (sofar.isEmpty) List((1, List(x)))
        else {
          val resIfEndsAtCurr = (sofar, xs).zipped map {
            (tp, y) =>
              val len = tp._1
              val seq = tp._2
              if (ord.lteq(y, x)) {
                (len + 1, x :: seq) // reversely recorded to avoid O(n)
              } else {
                (1, List(x))
              }
          }
          sofar :+ resIfEndsAtCurr.maxBy(_._1)
        }
    }.maxBy(_._1)._2.reverse
  }

  def main(args: Array[String]) = {
    println(longestIncrSubseq(List(
      0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)))
  }
}

Aquí hay otro O aplicación (n ^ 2) JAVA. Sin recursividad / memoization para generar la subsecuencia real. Sólo una matriz de cadenas que almacena los LIS reales en cada etapa y una matriz para almacenar la longitud de la LIS para cada elemento. darn bastante fácil. Echar un vistazo:

import java.io.BufferedReader;
import java.io.InputStreamReader;

/**
 * Created by Shreyans on 4/16/2015
 */

class LNG_INC_SUB//Longest Increasing Subsequence
{
    public static void main(String[] args) throws Exception
    {
        BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
        System.out.println("Enter Numbers Separated by Spaces to find their LIS\n");
        String[] s1=br.readLine().split(" ");
        int n=s1.length;
        int[] a=new int[n];//Array actual of Numbers
        String []ls=new String[n];// Array of Strings to maintain LIS for every element
        for(int i=0;i<n;i++)
        {
            a[i]=Integer.parseInt(s1[i]);
        }
        int[]dp=new int[n];//Storing length of max subseq.
        int max=dp[0]=1;//Defaults
        String seq=ls[0]=s1[0];//Defaults
        for(int i=1;i<n;i++)
        {
            dp[i]=1;
            String x="";
            for(int j=i-1;j>=0;j--)
            {
                //First check if number at index j is less than num at i.
                // Second the length of that DP should be greater than dp[i]
                // -1 since dp of previous could also be one. So we compare the dp[i] as empty initially
                if(a[j]<a[i]&&dp[j]>dp[i]-1)
                {
                    dp[i]=dp[j]+1;//Assigning temp length of LIS. There may come along a bigger LIS of a future a[j]
                    x=ls[j];//Assigning temp LIS of a[j]. Will append a[i] later on
                }
            }
            x+=(" "+a[i]);
            ls[i]=x;
            if(dp[i]>max)
            {
                max=dp[i];
                seq=ls[i];
            }
        }
        System.out.println("Length of LIS is: " + max + "\nThe Sequence is: " + seq);
    }
}

Código en acción: http://ideone.com/sBiOQx

Esto se puede resolver en O (n ^ 2) usando programación dinámica. código Python para el mismo sería como: -

def LIS(numlist):
    LS = [1]
    for i in range(1, len(numlist)):
        LS.append(1)
        for j in range(0, i):
            if numlist[i] > numlist[j] and LS[i]<=LS[j]:
                LS[i] = 1 + LS[j]
    print LS
    return max(LS)

numlist = map(int, raw_input().split(' '))
print LIS(numlist)

Para la entrada: 5 19 5 81 50 28 29 1 83 23

salida sería: [1, 2, 1, 3, 3, 3, 4, 1, 5, 3] 5

El list_index de lista de salida es la list_index de lista de entrada. El valor a una list_index dado en la lista de salida indica la longitud creciente subsecuencia más larga para que list_index.

aquí es java O (nlogn) aplicación

import java.util.Scanner;

public class LongestIncreasingSeq {


    private static int binarySearch(int table[],int a,int len){

        int end = len-1;
        int beg = 0;
        int mid = 0;
        int result = -1;
        while(beg <= end){
            mid = (end + beg) / 2;
            if(table[mid] < a){
                beg=mid+1;
                result = mid;
            }else if(table[mid] == a){
                return len-1;
            }else{
                end = mid-1;
            }
        }
        return result;
    }

    public static void main(String[] args) {        

//        int[] t = {1, 2, 5,9,16};
//        System.out.println(binarySearch(t , 9, 5));
        Scanner in = new Scanner(System.in);
        int size = in.nextInt();//4;

        int A[] = new int[size];
        int table[] = new int[A.length]; 
        int k = 0;
        while(k<size){
            A[k++] = in.nextInt();
            if(k<size-1)
                in.nextLine();
        }        
        table[0] = A[0];
        int len = 1; 
        for (int i = 1; i < A.length; i++) {
            if(table[0] > A[i]){
                table[0] = A[i];
            }else if(table[len-1]<A[i]){
                table[len++]=A[i];
            }else{
                table[binarySearch(table, A[i],len)+1] = A[i];
            }            
        }
        System.out.println(len);
    }    
}

Esta es una aplicación Java en O (n ^ 2). Simplemente no hice uso de búsqueda binaria para encontrar el elemento más pequeño de S, que es> = que X. acabo de utilizar un bucle for. El uso de búsqueda binaria haría que la complejidad en O (n log n)

public static void olis(int[] seq){

    int[] memo = new int[seq.length];

    memo[0] = seq[0];
    int pos = 0;

    for (int i=1; i<seq.length; i++){

        int x = seq[i];

            if (memo[pos] < x){ 
                pos++;
                memo[pos] = x;
            } else {

                for(int j=0; j<=pos; j++){
                    if (memo[j] >= x){
                        memo[j] = x;
                        break;
                    }
                }
            }
            //just to print every step
            System.out.println(Arrays.toString(memo));
    }

    //the final array with the LIS
    System.out.println(Arrays.toString(memo));
    System.out.println("The length of lis is " + (pos + 1));

}

descargar el código en java para más larga subsecuencia creciente con los elementos de la matriz

http://ideone.com/Nd2eba

/**
 **    Java Program to implement Longest Increasing Subsequence Algorithm
 **/

import java.util.Scanner;

/** Class  LongestIncreasingSubsequence **/
 class  LongestIncreasingSubsequence
{
    /** function lis **/
    public int[] lis(int[] X)
    {        
        int n = X.length - 1;
        int[] M = new int[n + 1];  
        int[] P = new int[n + 1]; 
        int L = 0;

        for (int i = 1; i < n + 1; i++)
        {
            int j = 0;

            /** Linear search applied here. Binary Search can be applied too.
                binary search for the largest positive j <= L such that 
                X[M[j]] < X[i] (or set j = 0 if no such value exists) **/

            for (int pos = L ; pos >= 1; pos--)
            {
                if (X[M[pos]] < X[i])
                {
                    j = pos;
                    break;
                }
            }            
            P[i] = M[j];
            if (j == L || X[i] < X[M[j + 1]])
            {
                M[j + 1] = i;
                L = Math.max(L,j + 1);
            }
        }

        /** backtrack **/

        int[] result = new int[L];
        int pos = M[L];
        for (int i = L - 1; i >= 0; i--)
        {
            result[i] = X[pos];
            pos = P[pos];
        }
        return result;             
    }

    /** Main Function **/
    public static void main(String[] args) 
    {    
        Scanner scan = new Scanner(System.in);
        System.out.println("Longest Increasing Subsequence Algorithm Test\n");

        System.out.println("Enter number of elements");
        int n = scan.nextInt();
        int[] arr = new int[n + 1];
        System.out.println("\nEnter "+ n +" elements");
        for (int i = 1; i <= n; i++)
            arr[i] = scan.nextInt();

        LongestIncreasingSubsequence obj = new LongestIncreasingSubsequence(); 
        int[] result = obj.lis(arr);       

        /** print result **/ 

        System.out.print("\nLongest Increasing Subsequence : ");
        for (int i = 0; i < result.length; i++)
            System.out.print(result[i] +" ");
        System.out.println();
    }
}

Esto se puede resolver en O (n ^ 2) usando programación dinámica.

Proceso de los elementos de entrada en orden y mantener una lista de tuplas para cada elemento. Cada tupla (A, B), para el elemento i se denota, A = longitud de más larga creciente sub-secuencia que termina en i y B = índice del predecesor de lista [i] en el más largo el aumento de sub-secuencia que termina en lista [i ].

Start desde el elemento 1, la lista de tupla para el elemento 1 será [(1,0)] para el elemento i, escanear la lista 0..i y encontrar lista de elementos [k] de tal manera que la lista de [k]

Al final, encontrar todos los elementos con valor máximo de A (longitud de LIS que termina en el elemento) y dar marcha atrás usando las tuplas para obtener la lista.

he compartido el código para la misma en http://www.edufyme.com/code /? id = 66f041e16a60928b05a7e228a89c3799

O (n ^ 2) la aplicación java:

void LIS(int arr[]){
        int maxCount[]=new int[arr.length];
        int link[]=new int[arr.length];
        int maxI=0;
        link[0]=0;
        maxCount[0]=0;

        for (int i = 1; i < arr.length; i++) {
            for (int j = 0; j < i; j++) {
                if(arr[j]<arr[i] && ((maxCount[j]+1)>maxCount[i])){
                    maxCount[i]=maxCount[j]+1;
                    link[i]=j;
                    if(maxCount[i]>maxCount[maxI]){
                        maxI=i;
                    }
                }
            }
        }


        for (int i = 0; i < link.length; i++) {
            System.out.println(arr[i]+"   "+link[i]);
        }
        print(arr,maxI,link);

    }

    void print(int arr[],int index,int link[]){
        if(link[index]==index){
            System.out.println(arr[index]+" ");
            return;
        }else{
            print(arr, link[index], link);
            System.out.println(arr[index]+" ");
        }
    }
def longestincrsub(arr1):
    n=len(arr1)
    l=[1]*n
    for i in range(0,n):
        for j in range(0,i)  :
            if arr1[j]<arr1[i] and l[i]<l[j] + 1:
                l[i] =l[j] + 1
    l.sort()
    return l[-1]
arr1=[10,22,9,33,21,50,41,60]
a=longestincrsub(arr1)
print(a)

a pesar de que hay un camino por el cual se puede resolver esta vez en O (nlogn) (esto resuelve en O (n ^ 2) tiempo), pero aún así da el enfoque de programación dinámica que también es bueno.

Aquí está mi solución Leetcode usando búsqueda binaria: ->

class Solution:
    def binary_search(self,s,x):
        low=0
        high=len(s)-1
        flag=1
        while low<=high:
              mid=(high+low)//2
              if s[mid]==x:
                 flag=0
                 break
              elif s[mid]<x:
                  low=mid+1
              else:
                 high=mid-1
        if flag:
           s[low]=x
        return s

    def lengthOfLIS(self, nums: List[int]) -> int:
         if not nums:
            return 0
         s=[]
         s.append(nums[0])
         for i in range(1,len(nums)):
             if s[-1]<nums[i]:
                s.append(nums[i])
             else:
                 s=self.binary_search(s,nums[i])
         return len(s)

solución más simple LIS en C ++ con O (n log (n)) complejidad del tiempo

#include <iostream>
#include "vector"
using namespace std;

// binary search (If value not found then it will return the index where the value should be inserted)
int ceilBinarySearch(vector<int> &a,int beg,int end,int value)
{
    if(beg<=end)
    {
        int mid = (beg+end)/2;
        if(a[mid] == value)
            return mid;
        else if(value < a[mid])
            return ceilBinarySearch(a,beg,mid-1,value);
        else
            return ceilBinarySearch(a,mid+1,end,value);

    return 0;
    }

    return beg;

}
int lis(vector<int> arr)
{
    vector<int> dp(arr.size(),0);
    int len = 0;
    for(int i = 0;i<arr.size();i++)
    {
        int j = ceilBinarySearch(dp,0,len-1,arr[i]);
        dp[j] = arr[i];
        if(j == len)
            len++;

    }
    return len;
}

int main()
{
    vector<int> arr  {2, 5,-1,0,6,1,2};
    cout<<lis(arr);
    return 0;
}

SALIDA:
    4

Licenciado bajo: CC-BY-SA con atribución
No afiliado a StackOverflow
scroll top