Question

Comment calculer la distance entre deux points spécifiés par la latitude et la longitude ?

Pour plus de précision, j'aimerais la distance en kilomètres ;les points utilisent le système WGS84 et j'aimerais comprendre la précision relative des approches disponibles.

Était-ce utile?

La solution

Ce lien pourrait vous être utile, car il détaille l'utilisation du Formule Haversine pour calculer la distance.

Extrait:

Ce script [en Javascript] calcule les distances des grands cercles entre les deux points – c’est-à-dire la distance la plus courte au-dessus de la surface de la Terre – en utilisant le Formule 'Haversine'.

function getDistanceFromLatLonInKm(lat1,lon1,lat2,lon2) {
  var R = 6371; // Radius of the earth in km
  var dLat = deg2rad(lat2-lat1);  // deg2rad below
  var dLon = deg2rad(lon2-lon1); 
  var a = 
    Math.sin(dLat/2) * Math.sin(dLat/2) +
    Math.cos(deg2rad(lat1)) * Math.cos(deg2rad(lat2)) * 
    Math.sin(dLon/2) * Math.sin(dLon/2)
    ; 
  var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a)); 
  var d = R * c; // Distance in km
  return d;
}

function deg2rad(deg) {
  return deg * (Math.PI/180)
}

Autres conseils

J'avais besoin de calculer beaucoup de distances entre les points pour mon projet, alors j'ai continué et j'ai essayé d'optimiser le code que j'ai trouvé ici.En moyenne dans différents navigateurs ma nouvelle implémentation fonctionne 2 fois plus vite que la réponse la plus votée.

function distance(lat1, lon1, lat2, lon2) {
  var p = 0.017453292519943295;    // Math.PI / 180
  var c = Math.cos;
  var a = 0.5 - c((lat2 - lat1) * p)/2 + 
          c(lat1 * p) * c(lat2 * p) * 
          (1 - c((lon2 - lon1) * p))/2;

  return 12742 * Math.asin(Math.sqrt(a)); // 2 * R; R = 6371 km
}

Vous pouvez jouer avec mon jsPerf et voir le résultats ici.

Récemment, j'ai dû faire la même chose en python, alors voici un implémentation python:

from math import cos, asin, sqrt
def distance(lat1, lon1, lat2, lon2):
    p = 0.017453292519943295     #Pi/180
    a = 0.5 - cos((lat2 - lat1) * p)/2 + cos(lat1 * p) * cos(lat2 * p) * (1 - cos((lon2 - lon1) * p)) / 2
    return 12742 * asin(sqrt(a)) #2*R*asin...

Et pour être complet : Haversine sur wiki.

Voici une implémentation C# :

static class DistanceAlgorithm
{
    const double PIx = 3.141592653589793;
    const double RADIUS = 6378.16;

    /// <summary>
    /// Convert degrees to Radians
    /// </summary>
    /// <param name="x">Degrees</param>
    /// <returns>The equivalent in radians</returns>
    public static double Radians(double x)
    {
        return x * PIx / 180;
    }

    /// <summary>
    /// Calculate the distance between two places.
    /// </summary>
    /// <param name="lon1"></param>
    /// <param name="lat1"></param>
    /// <param name="lon2"></param>
    /// <param name="lat2"></param>
    /// <returns></returns>
    public static double DistanceBetweenPlaces(
        double lon1,
        double lat1,
        double lon2,
        double lat2)
    {
        double dlon = Radians(lon2 - lon1);
        double dlat = Radians(lat2 - lat1);

        double a = (Math.Sin(dlat / 2) * Math.Sin(dlat / 2)) + Math.Cos(Radians(lat1)) * Math.Cos(Radians(lat2)) * (Math.Sin(dlon / 2) * Math.Sin(dlon / 2));
        double angle = 2 * Math.Atan2(Math.Sqrt(a), Math.Sqrt(1 - a));
        return angle * RADIUS;
    }

}

Voici une implémentation Java de la formule Haversine.

public final static double AVERAGE_RADIUS_OF_EARTH_KM = 6371;
public int calculateDistanceInKilometer(double userLat, double userLng,
  double venueLat, double venueLng) {

    double latDistance = Math.toRadians(userLat - venueLat);
    double lngDistance = Math.toRadians(userLng - venueLng);

    double a = Math.sin(latDistance / 2) * Math.sin(latDistance / 2)
      + Math.cos(Math.toRadians(userLat)) * Math.cos(Math.toRadians(venueLat))
      * Math.sin(lngDistance / 2) * Math.sin(lngDistance / 2);

    double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));

    return (int) (Math.round(AVERAGE_RADIUS_OF_EARTH_KM * c));
}

Notez qu’ici nous arrondissons la réponse au km le plus proche.

Merci beaucoup pour tout cela.J'ai utilisé le code suivant dans mon application iPhone Objective-C :

const double PIx = 3.141592653589793;
const double RADIO = 6371; // Mean radius of Earth in Km

double convertToRadians(double val) {

   return val * PIx / 180;
}

-(double)kilometresBetweenPlace1:(CLLocationCoordinate2D) place1 andPlace2:(CLLocationCoordinate2D) place2 {

        double dlon = convertToRadians(place2.longitude - place1.longitude);
        double dlat = convertToRadians(place2.latitude - place1.latitude);

        double a = ( pow(sin(dlat / 2), 2) + cos(convertToRadians(place1.latitude))) * cos(convertToRadians(place2.latitude)) * pow(sin(dlon / 2), 2);
        double angle = 2 * asin(sqrt(a));

        return angle * RADIO;
}

La latitude et la longitude sont en décimales.Je n'ai pas utilisé min() pour l'appel asin() car les distances que j'utilise sont si petites qu'elles n'en ont pas besoin.

Il a donné des réponses incorrectes jusqu'à ce que je transmette les valeurs en Radians - maintenant c'est à peu près la même chose que les valeurs obtenues à partir de l'application Map d'Apple :-)

Mise à jour supplémentaire :

Si vous utilisez iOS4 ou une version ultérieure, Apple propose quelques méthodes pour ce faire afin que la même fonctionnalité soit obtenue avec :

-(double)kilometresBetweenPlace1:(CLLocationCoordinate2D) place1 andPlace2:(CLLocationCoordinate2D) place2 {

    MKMapPoint  start, finish;


    start = MKMapPointForCoordinate(place1);
    finish = MKMapPointForCoordinate(place2);

    return MKMetersBetweenMapPoints(start, finish) / 1000;
}

Il s'agit d'une simple fonction PHP qui donnera une approximation très raisonnable (sous une marge d'erreur de +/-1%).

<?php
function distance($lat1, $lon1, $lat2, $lon2) {

    $pi80 = M_PI / 180;
    $lat1 *= $pi80;
    $lon1 *= $pi80;
    $lat2 *= $pi80;
    $lon2 *= $pi80;

    $r = 6372.797; // mean radius of Earth in km
    $dlat = $lat2 - $lat1;
    $dlon = $lon2 - $lon1;
    $a = sin($dlat / 2) * sin($dlat / 2) + cos($lat1) * cos($lat2) * sin($dlon / 2) * sin($dlon / 2);
    $c = 2 * atan2(sqrt($a), sqrt(1 - $a));
    $km = $r * $c;

    //echo '<br/>'.$km;
    return $km;
}
?>

Comme dit précédemment ;la terre n'est PAS une sphère.C'est comme une vieille, vieille balle de baseball avec laquelle Mark McGwire a décidé de s'entraîner : elle est pleine de bosses et de bosses.Les calculs les plus simples (comme celui-ci) le traitent comme une sphère.

Différentes méthodes peuvent être plus ou moins précises selon où vous vous situez sur cet ovoïde irrégulier ET selon la distance qui sépare vos points (plus ils sont proches, plus la marge d'erreur absolue est petite).Plus vos attentes sont précises, plus les calculs sont complexes.

Pour plus d'informations: distance géographique Wikipédia

Je poste ici mon exemple de travail.

Répertoriez tous les points du tableau ayant une distance entre un point désigné (nous utilisons un point aléatoire - lat : 45,20327, long : 23,7806) inférieure à 50 KM, avec latitude et longitude, dans MySQL (les champs du tableau sont coord_lat et coord_long) :

Énumérez tous ceux ayant une DISTANCE <50, en kilomètres (rayon terrestre considéré comme 6371 KM) :

SELECT denumire, (6371 * acos( cos( radians(45.20327) ) * cos( radians( coord_lat ) ) * cos( radians( 23.7806 ) - radians(coord_long) ) + sin( radians(45.20327) ) * sin( radians(coord_lat) ) )) AS distanta 
FROM obiective 
WHERE coord_lat<>'' 
    AND coord_long<>'' 
HAVING distanta<50 
ORDER BY distanta desc

L'exemple ci-dessus a été testé sous MySQL 5.0.95 et 5.5.16 (Linux).

Dans les autres réponses, une implémentation dans est manquant.

Calculer la distance entre deux points est assez simple avec la distm fonction à partir du geosphere emballer:

distm(p1, p2, fun = distHaversine)

où:

p1 = longitude/latitude for point(s)
p2 = longitude/latitude for point(s)
# type of distance calculation
fun = distCosine / distHaversine / distVincentySphere / distVincentyEllipsoid 

Comme la Terre n'est pas parfaitement sphérique, Formule de Vincenty pour les ellipsoïdes est probablement la meilleure façon de calculer les distances.Ainsi dans le geosphere package que vous utilisez alors :

distm(p1, p2, fun = distVincentyEllipsoid)

Bien sûr, vous n'êtes pas nécessairement obligé d'utiliser geosphere package, vous pouvez également calculer la distance en base R avec une fonction :

hav.dist <- function(long1, lat1, long2, lat2) {
  R <- 6371
  diff.long <- (long2 - long1)
  diff.lat <- (lat2 - lat1)
  a <- sin(diff.lat/2)^2 + cos(lat1) * cos(lat2) * sin(diff.long/2)^2
  b <- 2 * asin(pmin(1, sqrt(a))) 
  d = R * b
  return(d)
}

Le haversine est certainement une bonne formule dans la plupart des cas, d'autres réponses l'incluent déjà, donc je ne vais pas prendre de place.Mais il est important de noter que peu importe la formule utilisée (oui, pas une seule).En raison de la vaste plage de précision possible ainsi que du temps de calcul requis.Le choix de la formule nécessite un peu plus de réflexion qu’une simple réponse évidente.

Ce message d'une personne de la NASA est le meilleur que j'ai trouvé pour discuter des options.

http://www.cs.nyu.edu/visual/home/proj/tiger/gisfaq.html

Par exemple, si vous triez simplement les lignes par distance dans un rayon de 100 miles.La formule de la terre plate sera beaucoup plus rapide que la formule de la haversine.

HalfPi = 1.5707963;
R = 3956; /* the radius gives you the measurement unit*/

a = HalfPi - latoriginrad;
b = HalfPi - latdestrad;
u = a * a + b * b;
v = - 2 * a * b * cos(longdestrad - longoriginrad);
c = sqrt(abs(u + v));
return R * c;

Notez qu’il n’y a qu’un cosinus et une racine carrée.Contre 9 d’entre eux sur la formule Haversine.

Vous pouvez utiliser la construction dans CLLocationDistance pour calculer ceci :

CLLocation *location1 = [[CLLocation alloc] initWithLatitude:latitude1 longitude:longitude1];
CLLocation *location2 = [[CLLocation alloc] initWithLatitude:latitude2 longitude:longitude2];
[self distanceInMetersFromLocation:location1 toLocation:location2]

- (int)distanceInMetersFromLocation:(CLLocation*)location1 toLocation:(CLLocation*)location2 {
    CLLocationDistance distanceInMeters = [location1 distanceFromLocation:location2];
    return distanceInMeters;
}

Dans votre cas, si vous voulez des kilomètres, divisez simplement par 1000.

Je n'aime pas ajouter une autre réponse, mais l'API Google Maps v.3 a une géométrie sphérique (et plus).Après avoir converti votre WGS84 en degrés décimaux, vous pouvez faire ceci :

<script src="http://maps.google.com/maps/api/js?sensor=false&libraries=geometry" type="text/javascript"></script>  

distance = google.maps.geometry.spherical.computeDistanceBetween(
    new google.maps.LatLng(fromLat, fromLng), 
    new google.maps.LatLng(toLat, toLng));

Aucun mot sur la précision des calculs de Google ni même sur le modèle utilisé (bien qu'il soit dit "sphérique" plutôt que "géoïde".D'ailleurs, la distance « en ligne droite » sera évidemment différente de la distance si l'on voyage à la surface de la terre, ce que tout le monde semble présumer.

Implémentation de Python L’origine est le centre des États-Unis contigus.

from haversine import haversine
origin = (39.50, 98.35)
paris = (48.8567, 2.3508)
haversine(origin, paris, miles=True)

Pour obtenir la réponse en kilomètres, définissez simplement miles=false.

Il pourrait y avoir une solution plus simple, et plus correcte :Le périmètre de la Terre est de 40 000 km à l'équateur, soit environ 37 000 km sur le cycle de Greenwich (ou n'importe quelle longitude).Ainsi:

pythagoras = function (lat1, lon1, lat2, lon2) {
   function sqr(x) {return x * x;}
   function cosDeg(x) {return Math.cos(x * Math.PI / 180.0);}

   var earthCyclePerimeter = 40000000.0 * cosDeg((lat1 + lat2) / 2.0);
   var dx = (lon1 - lon2) * earthCyclePerimeter / 360.0;
   var dy = 37000000.0 * (lat1 - lat2) / 360.0;

   return Math.sqrt(sqr(dx) + sqr(dy));
};

Je suis d'accord qu'il faut l'affiner car, j'ai dit moi-même que c'est un ellipsoïde, donc le rayon à multiplier par le cosinus varie.Mais c'est un peu plus précis.Par rapport à Google Maps, cela a considérablement réduit l'erreur.

Toutes les réponses ci-dessus supposent que la Terre est une sphère.Cependant, une approximation plus précise serait celle d'un sphéroïde aplati.

a= 6378.137#equitorial radius in km
b= 6356.752#polar radius in km

def Distance(lat1, lons1, lat2, lons2):
    lat1=math.radians(lat1)
    lons1=math.radians(lons1)
    R1=(((((a**2)*math.cos(lat1))**2)+(((b**2)*math.sin(lat1))**2))/((a*math.cos(lat1))**2+(b*math.sin(lat1))**2))**0.5 #radius of earth at lat1
    x1=R*math.cos(lat1)*math.cos(lons1)
    y1=R*math.cos(lat1)*math.sin(lons1)
    z1=R*math.sin(lat1)

    lat2=math.radians(lat2)
    lons2=math.radians(lons2)
    R1=(((((a**2)*math.cos(lat2))**2)+(((b**2)*math.sin(lat2))**2))/((a*math.cos(lat2))**2+(b*math.sin(lat2))**2))**0.5 #radius of earth at lat2
    x2=R*math.cos(lat2)*math.cos(lons2)
    y2=R*math.cos(lat2)*math.sin(lons2)
    z2=R*math.sin(lat2)

    return ((x1-x2)**2+(y1-y2)**2+(z1-z2)**2)**0.5

Voici une manuscrit mise en œuvre de la formule Haversine

static getDistanceFromLatLonInKm(lat1: number, lon1: number, lat2: number, lon2: number): number {
    var deg2Rad = deg => {
        return deg * Math.PI / 180;
    }

    var r = 6371; // Radius of the earth in km
    var dLat = deg2Rad(lat2 - lat1);   
    var dLon = deg2Rad(lon2 - lon1);
    var a =
        Math.sin(dLat / 2) * Math.sin(dLat / 2) +
        Math.cos(deg2Rad(lat1)) * Math.cos(deg2Rad(lat2)) *
        Math.sin(dLon / 2) * Math.sin(dLon / 2);
    var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
    var d = r * c; // Distance in km
    return d;
}

Ce script [en PHP] calcule les distances entre les deux points.

public static function getDistanceOfTwoPoints($source, $dest, $unit='K') {
        $lat1 = $source[0];
        $lon1 = $source[1];
        $lat2 = $dest[0];
        $lon2 = $dest[1];

        $theta = $lon1 - $lon2;
        $dist = sin(deg2rad($lat1)) * sin(deg2rad($lat2)) +  cos(deg2rad($lat1)) * cos(deg2rad($lat2)) * cos(deg2rad($theta));
        $dist = acos($dist);
        $dist = rad2deg($dist);
        $miles = $dist * 60 * 1.1515;
        $unit = strtoupper($unit);

        if ($unit == "K") {
            return ($miles * 1.609344);
        }
        else if ($unit == "M")
        {
            return ($miles * 1.609344 * 1000);
        }
        else if ($unit == "N") {
            return ($miles * 0.8684);
        } 
        else {
            return $miles;
        }
    }

Voici l'implémentation SQL pour calculer la distance en km,

SELECT UserId, ( 3959 * acos( cos( radians( your latitude here ) ) * cos( radians(latitude) ) * 
cos( radians(longitude) - radians( your longitude here ) ) + sin( radians( your latitude here ) ) * 
sin( radians(latitude) ) ) ) AS distance FROM user HAVING
distance < 5  ORDER BY distance LIMIT 0 , 5;

Pour calculer la distance entre deux points sur une sphère, vous devez faire la Calcul du grand cercle.

Il existe un certain nombre de bibliothèques C/C++ pour faciliter la projection cartographique sur Outils cartographiques si vous avez besoin de reprojeter vos distances sur une surface plane.Pour ce faire, vous aurez besoin de la chaîne de projection des différents systèmes de coordonnées.

Vous pouvez également trouver FenêtreCarte un outil utile pour visualiser les points.De plus, comme il est open source, c'est un guide utile sur la façon d'utiliser la bibliothèque proj.dll, qui semble être la principale bibliothèque de projection open source.

Voici l'implémentation de la réponse acceptée portée sur Java au cas où quelqu'un en aurait besoin.

package com.project529.garage.util;


/**
 * Mean radius.
 */
private static double EARTH_RADIUS = 6371;

/**
 * Returns the distance between two sets of latitudes and longitudes in meters.
 * <p/>
 * Based from the following JavaScript SO answer:
 * http://stackoverflow.com/questions/27928/calculate-distance-between-two-latitude-longitude-points-haversine-formula,
 * which is based on https://en.wikipedia.org/wiki/Haversine_formula (error rate: ~0.55%).
 */
public double getDistanceBetween(double lat1, double lon1, double lat2, double lon2) {
    double dLat = toRadians(lat2 - lat1);
    double dLon = toRadians(lon2 - lon1);

    double a = Math.sin(dLat / 2) * Math.sin(dLat / 2) +
            Math.cos(toRadians(lat1)) * Math.cos(toRadians(lat2)) *
                    Math.sin(dLon / 2) * Math.sin(dLon / 2);
    double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
    double d = EARTH_RADIUS * c;

    return d;
}

public double toRadians(double degrees) {
    return degrees * (Math.PI / 180);
}

Comme indiqué, un calcul précis doit tenir compte du fait que la Terre n’est pas une sphère parfaite.Voici quelques comparaisons des différents algorithmes proposés ici :

geoDistance(50,5,58,3)
Haversine: 899 km
Maymenn: 833 km
Keerthana: 897 km
google.maps.geometry.spherical.computeDistanceBetween(): 900 km

geoDistance(50,5,-58,-3)
Haversine: 12030 km
Maymenn: 11135 km
Keerthana: 10310 km
google.maps.geometry.spherical.computeDistanceBetween(): 12044 km

geoDistance(.05,.005,.058,.003)
Haversine: 0.9169 km
Maymenn: 0.851723 km
Keerthana: 0.917964 km
google.maps.geometry.spherical.computeDistanceBetween(): 0.917964 km

geoDistance(.05,80,.058,80.3)
Haversine: 33.37 km
Maymenn: 33.34 km
Keerthana: 33.40767 km
google.maps.geometry.spherical.computeDistanceBetween(): 33.40770 km

Sur de petites distances, l'algorithme de Keerthana semble coïncider avec celui de Google Maps.Google Maps ne semble suivre aucun algorithme simple, ce qui suggère qu'il s'agit peut-être de la méthode la plus précise ici.

Quoi qu'il en soit, voici une implémentation Javascript de l'algorithme de Keerthana :

function geoDistance(lat1, lng1, lat2, lng2){
    const a = 6378.137; // equitorial radius in km
    const b = 6356.752; // polar radius in km

    var sq = x => (x*x);
    var sqr = x => Math.sqrt(x);
    var cos = x => Math.cos(x);
    var sin = x => Math.sin(x);
    var radius = lat => sqr((sq(a*a*cos(lat))+sq(b*b*sin(lat)))/(sq(a*cos(lat))+sq(b*sin(lat))));

    lat1 = lat1 * Math.PI / 180;
    lng1 = lng1 * Math.PI / 180;
    lat2 = lat2 * Math.PI / 180;
    lng2 = lng2 * Math.PI / 180;

    var R1 = radius(lat1);
    var x1 = R1*cos(lat1)*cos(lng1);
    var y1 = R1*cos(lat1)*sin(lng1);
    var z1 = R1*sin(lat1);

    var R2 = radius(lat2);
    var x2 = R2*cos(lat2)*cos(lng2);
    var y2 = R2*cos(lat2)*sin(lng2);
    var z2 = R2*sin(lat2);

    return sqr(sq(x1-x2)+sq(y1-y2)+sq(z1-z2));
}

Voici l'implémentation VB.NET, cette implémentation vous donnera le résultat en KM ou Miles en fonction d'une valeur Enum que vous transmettez.

Public Enum DistanceType
    Miles
    KiloMeters
End Enum

Public Structure Position
    Public Latitude As Double
    Public Longitude As Double
End Structure

Public Class Haversine

    Public Function Distance(Pos1 As Position,
                             Pos2 As Position,
                             DistType As DistanceType) As Double

        Dim R As Double = If((DistType = DistanceType.Miles), 3960, 6371)

        Dim dLat As Double = Me.toRadian(Pos2.Latitude - Pos1.Latitude)

        Dim dLon As Double = Me.toRadian(Pos2.Longitude - Pos1.Longitude)

        Dim a As Double = Math.Sin(dLat / 2) * Math.Sin(dLat / 2) + Math.Cos(Me.toRadian(Pos1.Latitude)) * Math.Cos(Me.toRadian(Pos2.Latitude)) * Math.Sin(dLon / 2) * Math.Sin(dLon / 2)

        Dim c As Double = 2 * Math.Asin(Math.Min(1, Math.Sqrt(a)))

        Dim result As Double = R * c

        Return result

    End Function

    Private Function toRadian(val As Double) As Double

        Return (Math.PI / 180) * val

    End Function

End Class

J'ai condensé le calcul en simplifiant la formule.

Le voici en Ruby :

include Math
earth_radius_mi = 3959
radians = lambda { |deg| deg * PI / 180 }
coord_radians = lambda { |c| { :lat => radians[c[:lat]], :lng => radians[c[:lng]] } }

# from/to = { :lat => (latitude_in_degrees), :lng => (longitude_in_degrees) }
def haversine_distance(from, to)
  from, to = coord_radians[from], coord_radians[to]
  cosines_product = cos(to[:lat]) * cos(from[:lat]) * cos(from[:lng] - to[:lng])
  sines_product = sin(to[:lat]) * sin(from[:lat])
  return earth_radius_mi * acos(cosines_product + sines_product)
end
function getDistanceFromLatLonInKm(lat1,lon1,lat2,lon2,units) {
  var R = 6371; // Radius of the earth in km
  var dLat = deg2rad(lat2-lat1);  // deg2rad below
  var dLon = deg2rad(lon2-lon1); 
  var a = 
    Math.sin(dLat/2) * Math.sin(dLat/2) +
    Math.cos(deg2rad(lat1)) * Math.cos(deg2rad(lat2)) * 
    Math.sin(dLon/2) * Math.sin(dLon/2)
    ; 
  var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a)); 
  var d = R * c; 
  var miles = d / 1.609344; 

if ( units == 'km' ) {  
return d; 
 } else {
return miles;
}}

La solution de Chuck, valable également pour les kilomètres.

Voici mon implémentation Java pour le calcul de la distance via des degrés décimaux après quelques recherches.J'ai utilisé le rayon moyen du monde (de Wikipédia) en km.Si vous voulez des résultats en miles, utilisez le rayon mondial en miles.

public static double distanceLatLong2(double lat1, double lng1, double lat2, double lng2) 
{
  double earthRadius = 6371.0d; // KM: use mile here if you want mile result

  double dLat = toRadian(lat2 - lat1);
  double dLng = toRadian(lng2 - lng1);

  double a = Math.pow(Math.sin(dLat/2), 2)  + 
          Math.cos(toRadian(lat1)) * Math.cos(toRadian(lat2)) * 
          Math.pow(Math.sin(dLng/2), 2);

  double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));

  return earthRadius * c; // returns result kilometers
}

public static double toRadian(double degrees) 
{
  return (degrees * Math.PI) / 180.0d;
}

Dans Mysql, utilisez la fonction suivante, transmettez les paramètres comme en utilisant POINT(LONG,LAT)

CREATE FUNCTION `distance`(a POINT, b POINT)
 RETURNS double
    DETERMINISTIC
BEGIN

RETURN

GLength( LineString(( PointFromWKB(a)), (PointFromWKB(b)))) * 100000; -- To Make the distance in meters

END;
function getDistanceFromLatLonInKm(position1, position2) {
    "use strict";
    var deg2rad = function (deg) { return deg * (Math.PI / 180); },
        R = 6371,
        dLat = deg2rad(position2.lat - position1.lat),
        dLng = deg2rad(position2.lng - position1.lng),
        a = Math.sin(dLat / 2) * Math.sin(dLat / 2)
            + Math.cos(deg2rad(position1.lat))
            * Math.cos(deg2rad(position1.lat))
            * Math.sin(dLng / 2) * Math.sin(dLng / 2),
        c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
    return R * c;
}

console.log(getDistanceFromLatLonInKm(
    {lat: 48.7931459, lng: 1.9483572},
    {lat: 48.827167, lng: 2.2459745}
));

voici un exemple dans postgres sql (en km, pour la version miles, remplacer la version 1.609344 par la version 0.8684)

CREATE OR REPLACE FUNCTION public.geodistance(alat float, alng float, blat  

float, blng  float)
  RETURNS float AS
$BODY$
DECLARE
    v_distance float;
BEGIN

    v_distance = asin( sqrt(
            sin(radians(blat-alat)/2)^2 
                + (
                    (sin(radians(blng-alng)/2)^2) *
                    cos(radians(alat)) *
                    cos(radians(blat))
                )
          )
        ) * cast('7926.3352' as float) * cast('1.609344' as float) ;


    RETURN v_distance;
END 
$BODY$
language plpgsql VOLATILE SECURITY DEFINER;
alter function geodistance(alat float, alng float, blat float, blng float)
owner to postgres;

il y a un bon exemple ici pour calculer la distance avec PHP http://www.geodatasource.com/developers/php :

 function distance($lat1, $lon1, $lat2, $lon2, $unit) {

     $theta = $lon1 - $lon2;
     $dist = sin(deg2rad($lat1)) * sin(deg2rad($lat2)) +  cos(deg2rad($lat1)) * cos(deg2rad($lat2)) * cos(deg2rad($theta));
     $dist = acos($dist);
     $dist = rad2deg($dist);
     $miles = $dist * 60 * 1.1515;
     $unit = strtoupper($unit);

     if ($unit == "K") {
         return ($miles * 1.609344);
     } else if ($unit == "N") {
          return ($miles * 0.8684);
     } else {
          return $miles;
     }
 }

J'ai eu un problème avec math.deg dans LUA...si quelqu'un connaît un correctif, veuillez nettoyer ce code !

En attendant, voici une implémentation de Haversine dans LUA (utilisez-la avec Redis !)

function calcDist(lat1, lon1, lat2, lon2)
    lat1= lat1*0.0174532925
    lat2= lat2*0.0174532925
    lon1= lon1*0.0174532925
    lon2= lon2*0.0174532925

    dlon = lon2-lon1
    dlat = lat2-lat1

    a = math.pow(math.sin(dlat/2),2) + math.cos(lat1) * math.cos(lat2) * math.pow(math.sin(dlon/2),2)
    c = 2 * math.asin(math.sqrt(a))
    dist = 6371 * c      -- multiply by 0.621371 to convert to miles
    return dist
end

acclamations!

En voici un autre converti en Rubis code:

include Math
#Note: from/to = [lat, long]

def get_distance_in_km(from, to)
  radians = lambda { |deg| deg * Math.PI / 180 }
  radius = 6371 # Radius of the earth in kilometer
  dLat = radians[to[0]-from[0]]
  dLon = radians[to[1]-from[1]]

  cosines_product = Math.sin(dLat/2) * Math.sin(dLat/2) + Math.cos(radians[from[0]]) * Math.cos(radians[to[1]]) * Math.sin(dLon/2) * Math.sin(dLon/2)

  c = 2 * Math.atan2(Math.sqrt(cosines_product), Math.sqrt(1-cosines_product)) 
  return radius * c # Distance in kilometer
end
Licencié sous: CC-BY-SA avec attribution
Non affilié à StackOverflow
scroll top