Domanda

Come faccio a calcolare la distanza tra le due coordinate GPS (mediante le coordinate di latitudine e longitudine)?

È stato utile?

Soluzione

calcolare la distanza tra due coordinate latitudine e longitudine , compresi un'implementazione Javascript.

West e Sud Locali sono negativi.   Ricordate minuti e secondi sono fuori di 60 in modo S31 30' è -31.50 gradi.

Non dimenticare di convertire i gradi in radianti . Molte lingue hanno questa funzione. O il suo un semplice calcolo:. radians = degrees * PI / 180

function degreesToRadians(degrees) {
  return degrees * Math.PI / 180;
}

function distanceInKmBetweenEarthCoordinates(lat1, lon1, lat2, lon2) {
  var earthRadiusKm = 6371;

  var dLat = degreesToRadians(lat2-lat1);
  var dLon = degreesToRadians(lon2-lon1);

  lat1 = degreesToRadians(lat1);
  lat2 = degreesToRadians(lat2);

  var a = Math.sin(dLat/2) * Math.sin(dLat/2) +
          Math.sin(dLon/2) * Math.sin(dLon/2) * Math.cos(lat1) * Math.cos(lat2); 
  var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a)); 
  return earthRadiusKm * c;
}

Ecco alcuni esempi di utilizzo:

  

distanceInKmBetweenCoordinates (0,0,0,0) // Distanza tra i medesimi punti dovrebbe essere 0       0   distanceInKmBetweenCoordinates (51.5, 0, 38,8, -77,1) // Da Londra a Arlington       5918,185064088764

Altri suggerimenti

Cercare haversine con Google; qui è la mia soluzione:

#include <math.h>
#include "haversine.h"

#define d2r (M_PI / 180.0)

//calculate haversine distance for linear distance
double haversine_km(double lat1, double long1, double lat2, double long2)
{
    double dlong = (long2 - long1) * d2r;
    double dlat = (lat2 - lat1) * d2r;
    double a = pow(sin(dlat/2.0), 2) + cos(lat1*d2r) * cos(lat2*d2r) * pow(sin(dlong/2.0), 2);
    double c = 2 * atan2(sqrt(a), sqrt(1-a));
    double d = 6367 * c;

    return d;
}

double haversine_mi(double lat1, double long1, double lat2, double long2)
{
    double dlong = (long2 - long1) * d2r;
    double dlat = (lat2 - lat1) * d2r;
    double a = pow(sin(dlat/2.0), 2) + cos(lat1*d2r) * cos(lat2*d2r) * pow(sin(dlong/2.0), 2);
    double c = 2 * atan2(sqrt(a), sqrt(1-a));
    double d = 3956 * c; 

    return d;
}

C # versione di Haversine

double _eQuatorialEarthRadius = 6378.1370D;
double _d2r = (Math.PI / 180D);

private int HaversineInM(double lat1, double long1, double lat2, double long2)
{
    return (int)(1000D * HaversineInKM(lat1, long1, lat2, long2));
}

private double HaversineInKM(double lat1, double long1, double lat2, double long2)
{
    double dlong = (long2 - long1) * _d2r;
    double dlat = (lat2 - lat1) * _d2r;
    double a = Math.Pow(Math.Sin(dlat / 2D), 2D) + Math.Cos(lat1 * _d2r) * Math.Cos(lat2 * _d2r) * Math.Pow(Math.Sin(dlong / 2D), 2D);
    double c = 2D * Math.Atan2(Math.Sqrt(a), Math.Sqrt(1D - a));
    double d = _eQuatorialEarthRadius * c;

    return d;
}

Ecco un violino .NET di questo , in modo da poter verificare il lavoro svolto con il proprio Lat / Longs.

Questo è molto facile da fare con il tipo di geografia in SQL Server 2008.

SELECT geography::Point(lat1, lon1, 4326).STDistance(geography::Point(lat2, lon2, 4326))
-- computes distance in meters using eliptical model, accurate to the mm

4326 è SRID per il modello WGS84 elipsoidal Terra

Java versione del Haversine algoritmo basato su Roman Makarov`s risposta a questa discussione

public class HaversineAlgorithm {

    static final double _eQuatorialEarthRadius = 6378.1370D;
    static final double _d2r = (Math.PI / 180D);

    public static int HaversineInM(double lat1, double long1, double lat2, double long2) {
        return (int) (1000D * HaversineInKM(lat1, long1, lat2, long2));
    }

    public static double HaversineInKM(double lat1, double long1, double lat2, double long2) {
        double dlong = (long2 - long1) * _d2r;
        double dlat = (lat2 - lat1) * _d2r;
        double a = Math.pow(Math.sin(dlat / 2D), 2D) + Math.cos(lat1 * _d2r) * Math.cos(lat2 * _d2r)
                * Math.pow(Math.sin(dlong / 2D), 2D);
        double c = 2D * Math.atan2(Math.sqrt(a), Math.sqrt(1D - a));
        double d = _eQuatorialEarthRadius * c;

        return d;
    }

}

Dipende da come precisa è necessario che sia, se avete bisogno di individuare la precisione, è meglio guardare un algoritmo con utilizza un ellissoide, piuttosto che una sfera, come ad esempio l'algoritmo di Vincenty, che è preciso al millimetro. http://en.wikipedia.org/wiki/Vincenty%27s_algorithm

Ecco una funzione Haversine in Python che uso:

from math import pi,sqrt,sin,cos,atan2

def haversine(pos1, pos2):
    lat1 = float(pos1['lat'])
    long1 = float(pos1['long'])
    lat2 = float(pos2['lat'])
    long2 = float(pos2['long'])

    degree_to_rad = float(pi / 180.0)

    d_lat = (lat2 - lat1) * degree_to_rad
    d_long = (long2 - long1) * degree_to_rad

    a = pow(sin(d_lat / 2), 2) + cos(lat1 * degree_to_rad) * cos(lat2 * degree_to_rad) * pow(sin(d_long / 2), 2)
    c = 2 * atan2(sqrt(a), sqrt(1 - a))
    km = 6367 * c
    mi = 3956 * c

    return {"km":km, "miles":mi}

Qui è in C # (lat e lungo in radianti):

double CalculateGreatCircleDistance(double lat1, double long1, double lat2, double long2, double radius)
{
    return radius * Math.Acos(
        Math.Sin(lat1) * Math.Sin(lat2)
        + Math.Cos(lat1) * Math.Cos(lat2) * Math.Cos(long2 - long1));
}

Se il lat e lungo sono in gradi poi dividere per 180 / PI per convertire in radianti.

versione di PHP:

(Rimuovere tutti deg2rad() se le coordinate sono già in radianti.)

$R = 6371; // km
$dLat = deg2rad($lat2-$lat1);
$dLon = deg2rad($lon2-$lon1);
$lat1 = deg2rad($lat1);
$lat2 = deg2rad($lat2);

$a = sin($dLat/2) * sin($dLat/2) +
     sin($dLon/2) * sin($dLon/2) * cos($lat1) * cos($lat2); 

$c = 2 * atan2(sqrt($a), sqrt(1-$a)); 
$d = $R * $c;

ho bisogno di calcolare un sacco di distanze tra i punti per il mio progetto, così sono andato avanti e ho cercato di ottimizzare il codice, ho trovato qui. In media in diversi browser mia nuova applicazione corre 2 volte più veloce che la risposta più upvoted.

function distance(lat1, lon1, lat2, lon2) {
  var p = 0.017453292519943295;    // Math.PI / 180
  var c = Math.cos;
  var a = 0.5 - c((lat2 - lat1) * p)/2 + 
          c(lat1 * p) * c(lat2 * p) * 
          (1 - c((lon2 - lon1) * p))/2;

  return 12742 * Math.asin(Math.sqrt(a)); // 2 * R; R = 6371 km
}

Si può giocare con il mio jsPerf e vedere i risultati della qui .

Recentemente avevo bisogno di fare lo stesso in pitone, ecco un applicazione python :

from math import cos, asin, sqrt
def distance(lat1, lon1, lat2, lon2):
    p = 0.017453292519943295
    a = 0.5 - cos((lat2 - lat1) * p)/2 + cos(lat1 * p) * cos(lat2 * p) * (1 - cos((lon2 - lon1) * p)) / 2
    return 12742 * asin(sqrt(a))

E per ragioni di completezza:. Haversine sulla wiki

Una funzione T-SQL, che uso per selezionare i record per distanza per un centro

Create Function  [dbo].[DistanceInMiles] 
 (  @fromLatitude float ,
    @fromLongitude float ,
    @toLatitude float, 
    @toLongitude float
  )
   returns float
AS 
BEGIN
declare @distance float

select @distance = cast((3963 * ACOS(round(COS(RADIANS(90-@fromLatitude))*COS(RADIANS(90-@toLatitude))+ 
SIN(RADIANS(90-@fromLatitude))*SIN(RADIANS(90-@toLatitude))*COS(RADIANS(@fromLongitude-@toLongitude)),15)) 
)as float) 
  return  round(@distance,1)
END

Se avete bisogno di qualcosa di più accurato poi hanno un guardare a questo .

  

formule di Vincenty sono due metodi iterativi correlati utilizzati in geodesia   per calcolare la distanza tra due punti sulla superficie di un   sferoidale, sviluppato da Thaddeus Vincenty (1975a) Essi si basano sulla   presupposto che la figura della Terra è uno sferoide schiacciato, e   quindi sono più precisi dei metodi quali ortodromia   che assumere una Terra sferica.

     

Il primo metodo (diretto) calcola la posizione di un punto che è un   data distanza e l'azimut (direzione) da un altro punto. Il secondo   (Inverso) metodo calcola la distanza geografica e azimuth   tra due punti dati. Essi sono stati ampiamente utilizzati in geodesia   perché sono una precisione di 0,5 mm (0,020 ") sulla Terra   ellissoide.

. Per quanto riguarda il metodo "briciole di pane"

  1. raggio terrestre è diverso su diversi Lat. Questo deve essere preso in considerazione in algoritmo Haversine.
  2. Si consideri la sostituzione dei cuscinetti, che trasforma le linee rette per archi (che sono più)
  3. Prendendo il cambiamento di velocità in considerazione girerà archi a spirali (che sono più o meno lungo di archi)
  4. dislivello si trasformerà spirali piatte al 3D a spirale (che sono ancora più a lungo). Questo è molto importante per le aree collinari.

Di seguito si veda la funzione in C che prende # 1 e # 2 in considerazione:

double   calcDistanceByHaversine(double rLat1, double rLon1, double rHeading1,
       double rLat2, double rLon2, double rHeading2){
  double rDLatRad = 0.0;
  double rDLonRad = 0.0;
  double rLat1Rad = 0.0;
  double rLat2Rad = 0.0;
  double a = 0.0;
  double c = 0.0;
  double rResult = 0.0;
  double rEarthRadius = 0.0;
  double rDHeading = 0.0;
  double rDHeadingRad = 0.0;

  if ((rLat1 < -90.0) || (rLat1 > 90.0) || (rLat2 < -90.0) || (rLat2 > 90.0)
              || (rLon1 < -180.0) || (rLon1 > 180.0) || (rLon2 < -180.0)
              || (rLon2 > 180.0)) {
        return -1;
  };

  rDLatRad = (rLat2 - rLat1) * DEGREE_TO_RADIANS;
  rDLonRad = (rLon2 - rLon1) * DEGREE_TO_RADIANS;
  rLat1Rad = rLat1 * DEGREE_TO_RADIANS;
  rLat2Rad = rLat2 * DEGREE_TO_RADIANS;

  a = sin(rDLatRad / 2) * sin(rDLatRad / 2) + sin(rDLonRad / 2) * sin(
              rDLonRad / 2) * cos(rLat1Rad) * cos(rLat2Rad);

  if (a == 0.0) {
        return 0.0;
  }

  c = 2 * atan2(sqrt(a), sqrt(1 - a));
  rEarthRadius = 6378.1370 - (21.3847 * 90.0 / ((fabs(rLat1) + fabs(rLat2))
              / 2.0));
  rResult = rEarthRadius * c;

  // Chord to Arc Correction based on Heading changes. Important for routes with many turns and U-turns

  if ((rHeading1 >= 0.0) && (rHeading1 < 360.0) && (rHeading2 >= 0.0)
              && (rHeading2 < 360.0)) {
        rDHeading = fabs(rHeading1 - rHeading2);
        if (rDHeading > 180.0) {
              rDHeading -= 180.0;
        }
        rDHeadingRad = rDHeading * DEGREE_TO_RADIANS;
        if (rDHeading > 5.0) {
              rResult = rResult * (rDHeadingRad / (2.0 * sin(rDHeadingRad / 2)));
        } else {
              rResult = rResult / cos(rDHeadingRad);
        }
  }
  return rResult;
}

II. C'è un modo più semplice che dà buoni risultati.

Con la velocità media.

Trip_distance = Trip_average_speed * Trip_time

Poiché velocità GPS viene rilevata per effetto Doppler e non è direttamente correlato [Lon, Lat] può essere almeno considerato secondario (backup o correzione) se non come metodo di calcolo della distanza principale.

Se stai usando .NET non reivent la ruota. Vedere sistema .Device.Location . Credito al FNX nei commenti a un'altra risposta .

using System.Device.Location;

double lat1 = 45.421527862548828D;
double long1 = -75.697189331054688D;
double lat2 = 53.64135D;
double long2 = -113.59273D;

GeoCoordinate geo1 = new GeoCoordinate(lat1, long1);
GeoCoordinate geo2 = new GeoCoordinate(lat2, long2);

double distance = geo1.GetDistanceTo(geo2);

Questo codice Lua è adattato da roba trovato su Wikipedia e nel film di Robert Lipe gpsbabel strumento:

local EARTH_RAD = 6378137.0 
  -- earth's radius in meters (official geoid datum, not 20,000km / pi)

local radmiles = EARTH_RAD*100.0/2.54/12.0/5280.0;
  -- earth's radius in miles

local multipliers = {
  radians = 1, miles = radmiles, mi = radmiles, feet = radmiles * 5280,
  meters = EARTH_RAD, m = EARTH_RAD, km = EARTH_RAD / 1000, 
  degrees = 360 / (2 * math.pi), min = 60 * 360 / (2 * math.pi)
}

function gcdist(pt1, pt2, units) -- return distance in radians or given units
  --- this formula works best for points close together or antipodal
  --- rounding error strikes when distance is one-quarter Earth's circumference
  --- (ref: wikipedia Great-circle distance)
  if not pt1.radians then pt1 = rad(pt1) end
  if not pt2.radians then pt2 = rad(pt2) end
  local sdlat = sin((pt1.lat - pt2.lat) / 2.0);
  local sdlon = sin((pt1.lon - pt2.lon) / 2.0);
  local res = sqrt(sdlat * sdlat + cos(pt1.lat) * cos(pt2.lat) * sdlon * sdlon);
  res = res > 1 and 1 or res < -1 and -1 or res
  res = 2 * asin(res);
  if units then return res * assert(multipliers[units])
  else return res
  end
end
    private double deg2rad(double deg)
    {
        return (deg * Math.PI / 180.0);
    }

    private double rad2deg(double rad)
    {
        return (rad / Math.PI * 180.0);
    }

    private double GetDistance(double lat1, double lon1, double lat2, double lon2)
    {
        //code for Distance in Kilo Meter
        double theta = lon1 - lon2;
        double dist = Math.Sin(deg2rad(lat1)) * Math.Sin(deg2rad(lat2)) + Math.Cos(deg2rad(lat1)) * Math.Cos(deg2rad(lat2)) * Math.Cos(deg2rad(theta));
        dist = Math.Abs(Math.Round(rad2deg(Math.Acos(dist)) * 60 * 1.1515 * 1.609344 * 1000, 0));
        return (dist);
    }

    private double GetDirection(double lat1, double lon1, double lat2, double lon2)
    {
        //code for Direction in Degrees
        double dlat = deg2rad(lat1) - deg2rad(lat2);
        double dlon = deg2rad(lon1) - deg2rad(lon2);
        double y = Math.Sin(dlon) * Math.Cos(lat2);
        double x = Math.Cos(deg2rad(lat1)) * Math.Sin(deg2rad(lat2)) - Math.Sin(deg2rad(lat1)) * Math.Cos(deg2rad(lat2)) * Math.Cos(dlon);
        double direct = Math.Round(rad2deg(Math.Atan2(y, x)), 0);
        if (direct < 0)
            direct = direct + 360;
        return (direct);
    }

    private double GetSpeed(double lat1, double lon1, double lat2, double lon2, DateTime CurTime, DateTime PrevTime)
    {
        //code for speed in Kilo Meter/Hour
        TimeSpan TimeDifference = CurTime.Subtract(PrevTime);
        double TimeDifferenceInSeconds = Math.Round(TimeDifference.TotalSeconds, 0);
        double theta = lon1 - lon2;
        double dist = Math.Sin(deg2rad(lat1)) * Math.Sin(deg2rad(lat2)) + Math.Cos(deg2rad(lat1)) * Math.Cos(deg2rad(lat2)) * Math.Cos(deg2rad(theta));
        dist = rad2deg(Math.Acos(dist)) * 60 * 1.1515 * 1.609344;
        double Speed = Math.Abs(Math.Round((dist / Math.Abs(TimeDifferenceInSeconds)) * 60 * 60, 0));
        return (Speed);
    }

    private double GetDuration(DateTime CurTime, DateTime PrevTime)
    {
        //code for speed in Kilo Meter/Hour
        TimeSpan TimeDifference = CurTime.Subtract(PrevTime);
        double TimeDifferenceInSeconds = Math.Abs(Math.Round(TimeDifference.TotalSeconds, 0));
        return (TimeDifferenceInSeconds);
    }

Questa è la versione da "Henry Vilinskiy" adattato per MySQL e Chilometri:

CREATE FUNCTION `CalculateDistanceInKm`(
  fromLatitude float,
  fromLongitude float,
  toLatitude float, 
  toLongitude float
) RETURNS float
BEGIN
  declare distance float;

  select 
    6367 * ACOS(
            round(
              COS(RADIANS(90-fromLatitude)) *
                COS(RADIANS(90-toLatitude)) +
                SIN(RADIANS(90-fromLatitude)) *
                SIN(RADIANS(90-toLatitude)) *
                COS(RADIANS(fromLongitude-toLongitude))
              ,15)
            )
    into distance;

  return  round(distance,3);
END;

ecco una rapida attuazione da la risposta

func degreesToRadians(degrees: Double) -> Double {
    return degrees * Double.pi / 180
}

func distanceInKmBetweenEarthCoordinates(lat1: Double, lon1: Double, lat2: Double, lon2: Double) -> Double {

    let earthRadiusKm: Double = 6371

    let dLat = degreesToRadians(degrees: lat2 - lat1)
    let dLon = degreesToRadians(degrees: lon2 - lon1)

    let lat1 = degreesToRadians(degrees: lat1)
    let lat2 = degreesToRadians(degrees: lat2)

    let a = sin(dLat/2) * sin(dLat/2) +
    sin(dLon/2) * sin(dLon/2) * cos(lat1) * cos(lat2)
    let c = 2 * atan2(sqrt(a), sqrt(1 - a))
    return earthRadiusKm * c
}

Credo che si desidera lungo la curvatura della terra. I vostri due punti e il centro della terra sono su un aereo. Il centro della terra è il centro di un cerchio su quel piano dei due punti sono (approssimativamente) sul perimetro del cerchio. Da che si può calcolare la distanza da scoprire ciò che l'angolo da un punto all'altro è.

Se i punti non sono le stesse altezze, o se è necessario prendere in considerazione che la terra non è una sfera perfetta diventa un po 'più difficile.

Recentemente ho dovuto fare la stessa cosa. Ho trovato questo sito per essere molto utile spiegare trigonometria sferica con esempi che erano facili da seguire con .

è possibile trovare un'attuazione della presente (con qualche buona spiegazione) in F # fssnip

qui sono le parti più importanti:


let GreatCircleDistance<[<Measure>] 'u> (R : float<'u>) (p1 : Location) (p2 : Location) =
    let degToRad (x : float<deg>) = System.Math.PI * x / 180.0<deg/rad>

    let sq x = x * x
    // take the sin of the half and square the result
    let sinSqHf (a : float<rad>) = (System.Math.Sin >> sq) (a / 2.0<rad>)
    let cos (a : float<deg>) = System.Math.Cos (degToRad a / 1.0<rad>)

    let dLat = (p2.Latitude - p1.Latitude) |> degToRad
    let dLon = (p2.Longitude - p1.Longitude) |> degToRad

    let a = sinSqHf dLat + cos p1.Latitude * cos p2.Latitude * sinSqHf dLon
    let c = 2.0 * System.Math.Atan2(System.Math.Sqrt(a), System.Math.Sqrt(1.0-a))

    R * c

Avevo bisogno di implementare questo in PowerShell, spero che possa aiutare qualcun altro. Alcune note su questo metodo

  1. Non dividere qualsiasi delle linee o il calcolo sarà sbagliato
  2. Per calcolare in KM rimuovere il * 1000 nel calcolo della distanza $
  3. Cambia $ earthsRadius = 3.963,19,059 mila e rimuovere * 1000 nel calcolo del $ la distanza per Calulate la distanza in miglia
  4. sto usando Haversine, come altri posti hanno sottolineato formule di Vincenty è molto più preciso

    Function MetresDistanceBetweenTwoGPSCoordinates($latitude1, $longitude1, $latitude2, $longitude2)  
    {  
      $Rad = ([math]::PI / 180);  
    
      $earthsRadius = 6378.1370 # Earth's Radius in KM  
      $dLat = ($latitude2 - $latitude1) * $Rad  
      $dLon = ($longitude2 - $longitude1) * $Rad  
      $latitude1 = $latitude1 * $Rad  
      $latitude2 = $latitude2 * $Rad  
    
      $a = [math]::Sin($dLat / 2) * [math]::Sin($dLat / 2) + [math]::Sin($dLon / 2) * [math]::Sin($dLon / 2) * [math]::Cos($latitude1) * [math]::Cos($latitude2)  
      $c = 2 * [math]::ATan2([math]::Sqrt($a), [math]::Sqrt(1-$a))  
    
      $distance = [math]::Round($earthsRadius * $c * 1000, 0) #Multiple by 1000 to get metres  
    
      Return $distance  
    }
    

Versione Scala

  def deg2rad(deg: Double) = deg * Math.PI / 180.0

  def rad2deg(rad: Double) = rad / Math.PI * 180.0

  def getDistanceMeters(lat1: Double, lon1: Double, lat2: Double, lon2: Double) = {
    val theta = lon1 - lon2
    val dist = Math.sin(deg2rad(lat1)) * Math.sin(deg2rad(lat2)) + Math.cos(deg2rad(lat1)) *
      Math.cos(deg2rad(lat2)) * Math.cos(deg2rad(theta))
    Math.abs(
      Math.round(
        rad2deg(Math.acos(dist)) * 60 * 1.1515 * 1.609344 * 1000)
    )
  }

ho preso la risposta superiore e usato in un programma Scala

import java.lang.Math.{atan2, cos, sin, sqrt}

def latLonDistance(lat1: Double, lon1: Double)(lat2: Double, lon2: Double): Double = {
    val earthRadiusKm = 6371
    val dLat = (lat2 - lat1).toRadians
    val dLon = (lon2 - lon1).toRadians
    val latRad1 = lat1.toRadians
    val latRad2 = lat2.toRadians

    val a = sin(dLat / 2) * sin(dLat / 2) + sin(dLon / 2) * sin(dLon / 2) * cos(latRad1) * cos(latRad2)
    val c = 2 * atan2(sqrt(a), sqrt(1 - a))
    earthRadiusKm * c
}

i curry la funzione in modo da essere in grado di produrre facilmente funzioni che hanno una delle due posizioni fisso e richiedono solo una coppia di latitudine / longitudine per produrre distanza.

// Forse un errore di errore di battitura?
Abbiamo un dlon variabile inutilizzata in GetDirection,
Presumo

double y = Math.Sin(dlon) * Math.Cos(lat2);
// cannot use degrees in Cos ?

dovrebbe essere

double y = Math.Sin(dlon) * Math.Cos(dlat);

Ecco la mia implementazione in Elixir

defmodule Geo do
  @earth_radius_km 6371
  @earth_radius_sm 3958.748
  @earth_radius_nm 3440.065
  @feet_per_sm 5280

  @d2r :math.pi / 180

  def deg_to_rad(deg), do: deg * @d2r

  def great_circle_distance(p1, p2, :km), do: haversine(p1, p2) * @earth_radius_km
  def great_circle_distance(p1, p2, :sm), do: haversine(p1, p2) * @earth_radius_sm
  def great_circle_distance(p1, p2, :nm), do: haversine(p1, p2) * @earth_radius_nm
  def great_circle_distance(p1, p2, :m), do: great_circle_distance(p1, p2, :km) * 1000
  def great_circle_distance(p1, p2, :ft), do: great_circle_distance(p1, p2, :sm) * @feet_per_sm

  @doc """
  Calculate the [Haversine](https://en.wikipedia.org/wiki/Haversine_formula)
  distance between two coordinates. Result is in radians. This result can be
  multiplied by the sphere's radius in any unit to get the distance in that unit.
  For example, multiple the result of this function by the Earth's radius in
  kilometres and you get the distance between the two given points in kilometres.
  """
  def haversine({lat1, lon1}, {lat2, lon2}) do
    dlat = deg_to_rad(lat2 - lat1)
    dlon = deg_to_rad(lon2 - lon1)

    radlat1 = deg_to_rad(lat1)
    radlat2 = deg_to_rad(lat2)

    a = :math.pow(:math.sin(dlat / 2), 2) +
        :math.pow(:math.sin(dlon / 2), 2) *
        :math.cos(radlat1) * :math.cos(radlat2)

    2 * :math.atan2(:math.sqrt(a), :math.sqrt(1 - a))
  end
end

Dart Version

Haversine Algoritmo.

import 'dart:math';

class GeoUtils {

  static double _degreesToRadians(degrees) {
    return degrees * pi / 180;
  }

  static double distanceInKmBetweenEarthCoordinates(lat1, lon1, lat2, lon2) {
    var earthRadiusKm = 6371;

    var dLat = _degreesToRadians(lat2-lat1);
    var dLon = _degreesToRadians(lon2-lon1);

    lat1 = _degreesToRadians(lat1);
    lat2 = _degreesToRadians(lat2);

    var a = sin(dLat/2) * sin(dLat/2) +
        sin(dLon/2) * sin(dLon/2) * cos(lat1) * cos(lat2);
    var c = 2 * atan2(sqrt(a), sqrt(1-a));
    return earthRadiusKm * c;
  }
}
Autorizzato sotto: CC-BY-SA insieme a attribuzione
Non affiliato a StackOverflow
scroll top