Come trovare l'elenco di possibili parole da una lettera di matrice [Boggle Risolutore]

StackOverflow https://stackoverflow.com/questions/746082

  •  09-09-2019
  •  | 
  •  

Domanda

Ultimamente sto giocando un gioco sul mio iPhone che si chiama Scramble.Alcuni di voi conosce questo gioco come Boggle.In sostanza, quando il gioco si avvia ottenere una matrice di lettere in questo modo:

F X I E
A M L O
E W B X
A S T U

L'obiettivo del gioco è quello di trovare parole come molti come si può, che può essere formato dalla concatenazione lettere insieme.Si può iniziare con una lettera, e tutte le lettere che la circondano sono fiera di gioco, e poi una volta che si sposta alla lettera successiva, tutte le lettere che circondano la lettera, sono fiera di gioco, tranne che per prima ha utilizzato le lettere.Così, nella griglia di cui sopra, per esempio, io potrei venire con le parole LOB, TUX, SEA, FAME, etc.Le parole devono essere di almeno 3 caratteri e non più di NxN personaggi, che sarebbe di 16 in questo gioco, ma può variare in alcune implementazioni.Mentre questo gioco è divertente e coinvolgente, sono apparentemente molto bravo e volevo imbrogliare un po ' da fare un programma che mi desse le migliori parole possibili (più lunga è la parola, più punti si ottiene).

Sample Boggle
(fonte: boggled.org)

Io, purtroppo, non è molto buona con algoritmi o la loro efficienza e così via.Il mio primo tentativo utilizza un dizionario come questo (~2.3 MB) e non lineare di ricerca cercando di abbinare combinazioni di voci del dizionario.Questo richiede un molto lungo periodo di tempo per trovare le parole, e dal momento che hai solo 2 minuti per ogni turno, semplicemente non è sufficiente.

Io sono interessato a vedere se qualsiasi Stackoverflowers può venire con soluzioni più efficienti.Sono per lo più alla ricerca di soluzioni utilizzando i Big 3 Ps:Python, PHP, Perl, e, anche se nulla con Java o C++ è troppo cool, dato che la velocità è essenziale.

SOLUZIONI ATTUALI:

  • Adam Rosenfield, Python, ~20s
  • Giovanni Fouhy, Python, ~3s
  • Kent Fredric, Perl, ~1s
  • Dario Pancetta, Python, ~1s
  • rvarcher, VB.NET (link diretto), ~1s
  • Paolo Bergantino, PHP (link diretto), ~5~2s in loco)
È stato utile?

Soluzione

La mia risposta funziona come gli altri qui, ma io pubblicarlo perché sembra un po 'più veloce rispetto alle altre soluzioni di Python, dalla creazione del dizionario più veloce. (Ho controllato questo contro la soluzione di John Fouhy.) Dopo l'installazione, il tempo di risolvere è giù nel rumore.

grid = "fxie amlo ewbx astu".split()
nrows, ncols = len(grid), len(grid[0])

# A dictionary word that could be a solution must use only the grid's
# letters and have length >= 3. (With a case-insensitive match.)
import re
alphabet = ''.join(set(''.join(grid)))
bogglable = re.compile('[' + alphabet + ']{3,}$', re.I).match

words = set(word.rstrip('\n') for word in open('words') if bogglable(word))
prefixes = set(word[:i] for word in words
               for i in range(2, len(word)+1))

def solve():
    for y, row in enumerate(grid):
        for x, letter in enumerate(row):
            for result in extending(letter, ((x, y),)):
                yield result

def extending(prefix, path):
    if prefix in words:
        yield (prefix, path)
    for (nx, ny) in neighbors(path[-1]):
        if (nx, ny) not in path:
            prefix1 = prefix + grid[ny][nx]
            if prefix1 in prefixes:
                for result in extending(prefix1, path + ((nx, ny),)):
                    yield result

def neighbors((x, y)):
    for nx in range(max(0, x-1), min(x+2, ncols)):
        for ny in range(max(0, y-1), min(y+2, nrows)):
            yield (nx, ny)

Utilizzo di esempio:

# Print a maximal-length word and its path:
print max(solve(), key=lambda (word, path): len(word))

Modifica:. filtrare parole da meno di 3 lettere

Modifica 2: Ero curioso di sapere perchè la soluzione del Perl di Kent Fredric era più veloce; si scopre di utilizzare espressioni regolari corrispondenti invece di un insieme di caratteri. Fare lo stesso in Python su raddoppia la velocità.

Altri suggerimenti

La soluzione più veloce si sta andando ad ottenere probabilmente coinvolgerà memorizzare il dizionario in un trie . Quindi, creare una coda di triplette ( x , y , s ), dove ogni elemento in coda corrisponde a un prefisso s di una parola che può essere scritto nella griglia, che termina nella posizione ( x , y ). Inizializzare la coda con N x N elementi (dove N è la dimensione della griglia), un elemento per ogni quadrato della griglia. Quindi, l'algoritmo procede come segue:

While the queue is not empty:
  Dequeue a triple (x, y, s)
  For each square (x', y') with letter c adjacent to (x, y):
    If s+c is a word, output s+c
    If s+c is a prefix of a word, insert (x', y', s+c) into the queue

Se si memorizza il dizionario in un trie, testare se s + c è una parola o un prefisso di una parola può essere fatto in tempo costante (si anche fornito mantenere alcuni metadati più in ogni dato coda, come ad esempio un puntatore al nodo corrente nel trie), in modo che il tempo di esecuzione di questo algoritmo è O (numero di parole che possono essere farro).

[Edit] Ecco un'implementazione in Python che ho appena codificato up:

#!/usr/bin/python

class TrieNode:
    def __init__(self, parent, value):
        self.parent = parent
        self.children = [None] * 26
        self.isWord = False
        if parent is not None:
            parent.children[ord(value) - 97] = self

def MakeTrie(dictfile):
    dict = open(dictfile)
    root = TrieNode(None, '')
    for word in dict:
        curNode = root
        for letter in word.lower():
            if 97 <= ord(letter) < 123:
                nextNode = curNode.children[ord(letter) - 97]
                if nextNode is None:
                    nextNode = TrieNode(curNode, letter)
                curNode = nextNode
        curNode.isWord = True
    return root

def BoggleWords(grid, dict):
    rows = len(grid)
    cols = len(grid[0])
    queue = []
    words = []
    for y in range(cols):
        for x in range(rows):
            c = grid[y][x]
            node = dict.children[ord(c) - 97]
            if node is not None:
                queue.append((x, y, c, node))
    while queue:
        x, y, s, node = queue[0]
        del queue[0]
        for dx, dy in ((1, 0), (1, -1), (0, -1), (-1, -1), (-1, 0), (-1, 1), (0, 1), (1, 1)):
            x2, y2 = x + dx, y + dy
            if 0 <= x2 < cols and 0 <= y2 < rows:
                s2 = s + grid[y2][x2]
                node2 = node.children[ord(grid[y2][x2]) - 97]
                if node2 is not None:
                    if node2.isWord:
                        words.append(s2)
                    queue.append((x2, y2, s2, node2))

    return words

Esempio di utilizzo:

d = MakeTrie('/usr/share/dict/words')
print(BoggleWords(['fxie','amlo','ewbx','astu'], d))

Output:

  

[ 'fa', 'XI', 'vale a dire', 'io', 'el', 'Am', 'ax', 'ae', 'aw', 'mi', 'ma', 'me ', 'lo', 'Li', 'oe', 'bue', 'em', 'EA', 'EA', 'es', 'wa', 'noi', 'wa', 'bo', 'bu', 'come', 'aw', 'ae', 'st', 'se', 'sa', 'tu', 'ut', 'fam', 'fae', 'imi', 'eli ', 'olmo', 'ELB', 'ami', 'ama', 'ame', 'aes', 'punteruolo', 'AWA', 'timore', 'AWA', 'mix', 'mim', 'mil', 'mam', 'max', 'mae', 'fauci', 'mew', 'mem', 'mes', 'destro', 'lox', 'lei', 'leo', 'lie ', 'lim', 'olio', 'proteo', 'pecora', 'eme', 'cera', 'waf', 'wae', 'waw', 'wem', 'wea', 'wea', 'era', 'waw', 'wae', 'Bob', 'blo', 'Bub', 'ma', 'ast', 'ase', 'asa', 'punteruolo', 'AWA', 'timore ', 'AWA', 'aes', 'SWA', 'SWA', 'cucire', 'mare', 'mare', 'ha visto', 'smoking', 'vasca', 'tut', 'twa', 'twa', 'tst', 'utu', 'fama', 'fame', 'Ixil', 'imam', 'amli', 'Amil', 'ambo', 'axil', 'assale', 'mimi ', 'mima', 'mimo', 'milo', 'miglio', 'miagolare', 'mese', 'mesa', 'lolo', 'lobo', 'lima', 'calce', 'arto', 'Lile', 'oime', 'oleo', 'olio', 'oboe', 'obolo', 'Emim', 'emil', 'est', 'facilità', 'Wame', 'wawa', 'wawa ' 'WEAM', 'west', 'Wese', 'eri',' wa se', 'wawa', 'wawa', 'ebollizione', 'bolo', 'bolo', 'bobo', 'blob', 'Bleo', 'bubbone', 'asem', 'stub', 'stut' , 'nuotato', 'semi',, 'cucitura' 'seme', 'SeaX', 'sasa', 'sawt', 'tutu', 'tuts', 'twae', 'twas', 'twae', ' Ilima', 'ambio', 'assile', 'awest', 'Mamie', 'Mambo', 'Maxim', 'MEASE', 'Mesem', 'Limax', 'limes', 'limbo', 'Limbu' , 'obole', 'Emesa', 'eMBox', 'awest', 'swami', 'famble',, 'maxima' 'mimble', 'embolo', 'embole', 'Wamble', 'Semese', ' semble', 'sawbwa', 'sawbwa']

Note: Questo programma non emette 1 parolacce, o un filtro per lunghezza di parola a tutti. Questo è facile aggiungere ma non realmente rilevanti per il problema. Produce anche alcune parole più volte se possono essere scritte in diversi modi. Se una data parola può essere scritto in molti modi diversi (caso peggiore: ogni lettera nella griglia è lo stesso (ad esempio 'A') e una parola come 'aaaaaaaaaa' è nel vostro dizionario), quindi il tempo di esecuzione otterrà orribilmente esponenziale . Filtrando i duplicati e l'ordinamento è banale dovuto dopo l'algoritmo è finito.

Per un aumento di velocità dizionario, c'è una generale trasformazione / processo si può fare per ridurre notevolmente i confronti dizionario prima del tempo.

Dato che il sopra griglia contiene solo 16 caratteri, alcuni di loro duplicati, è possibile ridurre notevolmente il numero di chiavi totali nel vostro dizionario semplicemente filtrando le voci che hanno caratteri irraggiungibili.

Ho pensato che questo era l'ottimizzazione ovvio, ma vedendo nessuno fatto che sto citarlo.

Mi ridotto da un dizionario di 200.000 chiavi per solo 2.000 i tasti semplicemente durante il passaggio di ingresso. Questo per lo meno riduce l'overhead di memoria, e che è sicuro di mappare un aumento di velocità da qualche parte come la memoria non è infinitamente veloce.

Perl Attuazione

La mia realizzazione è un po 'pesante nella parte superiore, perché ho messo importanza di essere in grado di conoscere il percorso esatto di ogni stringa estratta, non solo la validità in esso.

Ho anche un paio di adattamenti in là che sarebbe teoricamente permettere una griglia con fori in esso di funzionare, e le griglie con linee di dimensioni diverse (supponendo che si ottiene il diritto di ingresso e si allinea in qualche modo).

L'inizio del filtro è di gran lunga il più significativo collo di bottiglia nella mia richiesta, come sospettato in precedenza, commentando che la linea bloats da 1.5s a 7.5s.

Al momento dell'esecuzione sembra che tutte le singole cifre sono sulle proprie parole valide, ma sono abbastanza sicuro che questo è a causa di come funziona il file del dizionario.

E 'un po' gonfio, ma almeno ho riutilizzo Albero :: Trie da CPAN

Una parte di esso è stato ispirato in parte dalle implementazioni esistenti, alcuni dei quali avevo in mente già.

critiche costruttive e modi potrebbe essere migliore accoglienza (/ me note che mai cercato CPAN per un risolutore Boggle , ma questo è stato più divertente lavorare fuori)

aggiornato di nuovi criteri

#!/usr/bin/perl 

use strict;
use warnings;

{

  # this package manages a given path through the grid.
  # Its an array of matrix-nodes in-order with
  # Convenience functions for pretty-printing the paths
  # and for extending paths as new paths.

  # Usage:
  # my $p = Prefix->new(path=>[ $startnode ]);
  # my $c = $p->child( $extensionNode );
  # print $c->current_word ;

  package Prefix;
  use Moose;

  has path => (
      isa     => 'ArrayRef[MatrixNode]',
      is      => 'rw',
      default => sub { [] },
  );
  has current_word => (
      isa        => 'Str',
      is         => 'rw',
      lazy_build => 1,
  );

  # Create a clone of this object
  # with a longer path

  # $o->child( $successive-node-on-graph );

  sub child {
      my $self    = shift;
      my $newNode = shift;
      my $f       = Prefix->new();

      # Have to do this manually or other recorded paths get modified
      push @{ $f->{path} }, @{ $self->{path} }, $newNode;
      return $f;
  }

  # Traverses $o->path left-to-right to get the string it represents.

  sub _build_current_word {
      my $self = shift;
      return join q{}, map { $_->{value} } @{ $self->{path} };
  }

  # Returns  the rightmost node on this path

  sub tail {
      my $self = shift;
      return $self->{path}->[-1];
  }

  # pretty-format $o->path

  sub pp_path {
      my $self = shift;
      my @path =
        map { '[' . $_->{x_position} . ',' . $_->{y_position} . ']' }
        @{ $self->{path} };
      return "[" . join( ",", @path ) . "]";
  }

  # pretty-format $o
  sub pp {
      my $self = shift;
      return $self->current_word . ' => ' . $self->pp_path;
  }

  __PACKAGE__->meta->make_immutable;
}

{

  # Basic package for tracking node data
  # without having to look on the grid.
  # I could have just used an array or a hash, but that got ugly.

# Once the matrix is up and running it doesn't really care so much about rows/columns,
# Its just a sea of points and each point has adjacent points.
# Relative positioning is only really useful to map it back to userspace

  package MatrixNode;
  use Moose;

  has x_position => ( isa => 'Int', is => 'rw', required => 1 );
  has y_position => ( isa => 'Int', is => 'rw', required => 1 );
  has value      => ( isa => 'Str', is => 'rw', required => 1 );
  has siblings   => (
      isa     => 'ArrayRef[MatrixNode]',
      is      => 'rw',
      default => sub { [] }
  );

# Its not implicitly uni-directional joins. It would be more effient in therory
# to make the link go both ways at the same time, but thats too hard to program around.
# and besides, this isn't slow enough to bother caring about.

  sub add_sibling {
      my $self    = shift;
      my $sibling = shift;
      push @{ $self->siblings }, $sibling;
  }

  # Convenience method to derive a path starting at this node

  sub to_path {
      my $self = shift;
      return Prefix->new( path => [$self] );
  }
  __PACKAGE__->meta->make_immutable;

}

{

  package Matrix;
  use Moose;

  has rows => (
      isa     => 'ArrayRef',
      is      => 'rw',
      default => sub { [] },
  );

  has regex => (
      isa        => 'Regexp',
      is         => 'rw',
      lazy_build => 1,
  );

  has cells => (
      isa        => 'ArrayRef',
      is         => 'rw',
      lazy_build => 1,
  );

  sub add_row {
      my $self = shift;
      push @{ $self->rows }, [@_];
  }

  # Most of these functions from here down are just builder functions,
  # or utilities to help build things.
  # Some just broken out to make it easier for me to process.
  # All thats really useful is add_row
  # The rest will generally be computed, stored, and ready to go
  # from ->cells by the time either ->cells or ->regex are called.

  # traverse all cells and make a regex that covers them.
  sub _build_regex {
      my $self  = shift;
      my $chars = q{};
      for my $cell ( @{ $self->cells } ) {
          $chars .= $cell->value();
      }
      $chars = "[^$chars]";
      return qr/$chars/i;
  }

  # convert a plain cell ( ie: [x][y] = 0 )
  # to an intelligent cell ie: [x][y] = object( x, y )
  # we only really keep them in this format temporarily
  # so we can go through and tie in neighbouring information.
  # after the neigbouring is done, the grid should be considered inoperative.

  sub _convert {
      my $self = shift;
      my $x    = shift;
      my $y    = shift;
      my $v    = $self->_read( $x, $y );
      my $n    = MatrixNode->new(
          x_position => $x,
          y_position => $y,
          value      => $v,
      );
      $self->_write( $x, $y, $n );
      return $n;
  }

# go through the rows/collums presently available and freeze them into objects.

  sub _build_cells {
      my $self = shift;
      my @out  = ();
      my @rows = @{ $self->{rows} };
      for my $x ( 0 .. $#rows ) {
          next unless defined $self->{rows}->[$x];
          my @col = @{ $self->{rows}->[$x] };
          for my $y ( 0 .. $#col ) {
              next unless defined $self->{rows}->[$x]->[$y];
              push @out, $self->_convert( $x, $y );
          }
      }
      for my $c (@out) {
          for my $n ( $self->_neighbours( $c->x_position, $c->y_position ) ) {
              $c->add_sibling( $self->{rows}->[ $n->[0] ]->[ $n->[1] ] );
          }
      }
      return \@out;
  }

  # given x,y , return array of points that refer to valid neighbours.
  sub _neighbours {
      my $self = shift;
      my $x    = shift;
      my $y    = shift;
      my @out  = ();
      for my $sx ( -1, 0, 1 ) {
          next if $sx + $x < 0;
          next if not defined $self->{rows}->[ $sx + $x ];
          for my $sy ( -1, 0, 1 ) {
              next if $sx == 0 && $sy == 0;
              next if $sy + $y < 0;
              next if not defined $self->{rows}->[ $sx + $x ]->[ $sy + $y ];
              push @out, [ $sx + $x, $sy + $y ];
          }
      }
      return @out;
  }

  sub _has_row {
      my $self = shift;
      my $x    = shift;
      return defined $self->{rows}->[$x];
  }

  sub _has_cell {
      my $self = shift;
      my $x    = shift;
      my $y    = shift;
      return defined $self->{rows}->[$x]->[$y];
  }

  sub _read {
      my $self = shift;
      my $x    = shift;
      my $y    = shift;
      return $self->{rows}->[$x]->[$y];
  }

  sub _write {
      my $self = shift;
      my $x    = shift;
      my $y    = shift;
      my $v    = shift;
      $self->{rows}->[$x]->[$y] = $v;
      return $v;
  }

  __PACKAGE__->meta->make_immutable;
}

use Tree::Trie;

sub readDict {
  my $fn = shift;
  my $re = shift;
  my $d  = Tree::Trie->new();

  # Dictionary Loading
  open my $fh, '<', $fn;
  while ( my $line = <$fh> ) {
      chomp($line);

 # Commenting the next line makes it go from 1.5 seconds to 7.5 seconds. EPIC.
      next if $line =~ $re;    # Early Filter
      $d->add( uc($line) );
  }
  return $d;
}

sub traverseGraph {
  my $d     = shift;
  my $m     = shift;
  my $min   = shift;
  my $max   = shift;
  my @words = ();

  # Inject all grid nodes into the processing queue.

  my @queue =
    grep { $d->lookup( $_->current_word ) }
    map  { $_->to_path } @{ $m->cells };

  while (@queue) {
      my $item = shift @queue;

      # put the dictionary into "exact match" mode.

      $d->deepsearch('exact');

      my $cword = $item->current_word;
      my $l     = length($cword);

      if ( $l >= $min && $d->lookup($cword) ) {
          push @words,
            $item;    # push current path into "words" if it exactly matches.
      }
      next if $l > $max;

      # put the dictionary into "is-a-prefix" mode.
      $d->deepsearch('boolean');

    siblingloop: foreach my $sibling ( @{ $item->tail->siblings } ) {
          foreach my $visited ( @{ $item->{path} } ) {
              next siblingloop if $sibling == $visited;
          }

          # given path y , iterate for all its end points
          my $subpath = $item->child($sibling);

          # create a new path for each end-point
          if ( $d->lookup( $subpath->current_word ) ) {

             # if the new path is a prefix, add it to the bottom of the queue.
              push @queue, $subpath;
          }
      }
  }
  return \@words;
}

sub setup_predetermined { 
  my $m = shift; 
  my $gameNo = shift;
  if( $gameNo == 0 ){
      $m->add_row(qw( F X I E ));
      $m->add_row(qw( A M L O ));
      $m->add_row(qw( E W B X ));
      $m->add_row(qw( A S T U ));
      return $m;
  }
  if( $gameNo == 1 ){
      $m->add_row(qw( D G H I ));
      $m->add_row(qw( K L P S ));
      $m->add_row(qw( Y E U T ));
      $m->add_row(qw( E O R N ));
      return $m;
  }
}
sub setup_random { 
  my $m = shift; 
  my $seed = shift;
  srand $seed;
  my @letters = 'A' .. 'Z' ; 
  for( 1 .. 4 ){ 
      my @r = ();
      for( 1 .. 4 ){
          push @r , $letters[int(rand(25))];
      }
      $m->add_row( @r );
  }
}

# Here is where the real work starts.

my $m = Matrix->new();
setup_predetermined( $m, 0 );
#setup_random( $m, 5 );

my $d = readDict( 'dict.txt', $m->regex );
my $c = scalar @{ $m->cells };    # get the max, as per spec

print join ",\n", map { $_->pp } @{
  traverseGraph( $d, $m, 3, $c ) ;
};

Arch / info esecuzione per il confronto:

model name      : Intel(R) Core(TM)2 Duo CPU     T9300  @ 2.50GHz
cache size      : 6144 KB
Memory usage summary: heap total: 77057577, heap peak: 11446200, stack peak: 26448
       total calls   total memory   failed calls
 malloc|     947212       68763684              0
realloc|      11191        1045641              0  (nomove:9063, dec:4731, free:0)
 calloc|     121001        7248252              0
   free|     973159       65854762

Histogram for block sizes:
  0-15         392633  36% ==================================================
 16-31          43530   4% =====
 32-47          50048   4% ======
 48-63          70701   6% =========
 64-79          18831   1% ==
 80-95          19271   1% ==
 96-111        238398  22% ==============================
112-127          3007  <1% 
128-143        236727  21% ==============================

Più borbottii su che Regex ottimizzazione

L'ottimizzazione regex che uso è inutile per il multi-risolvere i dizionari, e per il multi-solve si vorrà un dizionario completo, non un pre-rifilato uno.

Tuttavia, detto questo, per una tantum risolve, la sua veramente veloce. (Perl regex sono in C! :))

Ecco alcune aggiunte di codice variabili:

sub readDict_nofilter {
  my $fn = shift;
  my $re = shift;
  my $d  = Tree::Trie->new();

  # Dictionary Loading
  open my $fh, '<', $fn;
  while ( my $line = <$fh> ) {
      chomp($line);
      $d->add( uc($line) );
  }
  return $d;
}

sub benchmark_io { 
  use Benchmark qw( cmpthese :hireswallclock );
   # generate a random 16 character string 
   # to simulate there being an input grid. 
  my $regexen = sub { 
      my @letters = 'A' .. 'Z' ; 
      my @lo = ();
      for( 1..16 ){ 
          push @lo , $_ ; 
      }
      my $c  = join '', @lo;
      $c = "[^$c]";
      return qr/$c/i;
  };
  cmpthese( 200 , { 
      filtered => sub { 
          readDict('dict.txt', $regexen->() );
      }, 
      unfiltered => sub {
          readDict_nofilter('dict.txt');
      }
  });
}
           s/iter unfiltered   filtered
unfiltered   8.16         --       -94%
filtered    0.464      1658%         --

ps: 8,16 * 200 = 27 minuti.

Si potrebbe dividere il problema in due pezzi:

  1. Un qualche tipo di algoritmo di ricerca che enumerare le stringhe possibili nella griglia.
  2. Un modo per verificare se una stringa è una parola valida.

Idealmente, (2) dovrebbe includere anche un modo per verificare se una stringa è un prefisso di un valido documento di word – questo vi permetterà di potare la tua ricerca e risparmiare un mucchio di tempo.

Adam Rosenfield s Trie è una soluzione di (2).E 'elegante e probabilmente ciò che il vostro algoritmi specialista preferisce, ma con le lingue moderne e moderni computer, si può essere un po' più pigro.Inoltre, come Kent suggerisce, possiamo ridurre il nostro dizionario dimensione scartando le parole con le lettere non presenti nella griglia.Ecco alcune python:

def make_lookups(grid, fn='dict.txt'):
    # Make set of valid characters.
    chars = set()
    for word in grid:
        chars.update(word)

    words = set(x.strip() for x in open(fn) if set(x.strip()) <= chars)
    prefixes = set()
    for w in words:
        for i in range(len(w)+1):
            prefixes.add(w[:i])

    return words, prefixes

Wow;costante di tempo prefisso test.Ci vogliono un paio di secondi per caricare il dizionario è collegato, ma solo un paio :-) (si noti che words <= prefixes)

Ora, per la parte (1), io sono propenso a pensare in termini di grafici.Quindi dovrò costruire un dizionario che sembra qualcosa di simile a questo:

graph = { (x, y):set([(x0,y0), (x1,y1), (x2,y2)]), }

cioè graph[(x, y)] è l'insieme di coordinate che si può raggiungere da posizione (x, y).Aggiungo un nodo fittizio None che permetterà di collegare il tutto.

La costruzione è un po ' goffo, perché ci sono 8 le posizioni possibili e fare la verifica dei limiti.Ecco alcuni corrispondenti goffo codice python:

def make_graph(grid):
    root = None
    graph = { root:set() }
    chardict = { root:'' }

    for i, row in enumerate(grid):
        for j, char in enumerate(row):
            chardict[(i, j)] = char
            node = (i, j)
            children = set()
            graph[node] = children
            graph[root].add(node)
            add_children(node, children, grid)

    return graph, chardict

def add_children(node, children, grid):
    x0, y0 = node
    for i in [-1,0,1]:
        x = x0 + i
        if not (0 <= x < len(grid)):
            continue
        for j in [-1,0,1]:
            y = y0 + j
            if not (0 <= y < len(grid[0])) or (i == j == 0):
                continue

            children.add((x,y))

Questo codice crea anche un dizionario di mappatura (x,y) per il carattere corrispondente.Questo mi permette di girare un elenco di posizioni in una parola:

def to_word(chardict, pos_list):
    return ''.join(chardict[x] for x in pos_list)

Infine, facciamo una ricerca prima di profondità.La procedura di base è:

  1. La ricerca arriva a un nodo particolare.
  2. Controllare se il percorso finora può essere una parte di una parola.Se non, non esplorare questo ramo ulteriormente.
  3. Controllare se il percorso finora è una parola.Se è così, aggiungere all'elenco dei risultati.
  4. Esplorare tutti i bambini non fanno parte del percorso finora.

Python:

def find_words(graph, chardict, position, prefix, results, words, prefixes):
    """ Arguments:
      graph :: mapping (x,y) to set of reachable positions
      chardict :: mapping (x,y) to character
      position :: current position (x,y) -- equals prefix[-1]
      prefix :: list of positions in current string
      results :: set of words found
      words :: set of valid words in the dictionary
      prefixes :: set of valid words or prefixes thereof
    """
    word = to_word(chardict, prefix)

    if word not in prefixes:
        return

    if word in words:
        results.add(word)

    for child in graph[position]:
        if child not in prefix:
            find_words(graph, chardict, child, prefix+[child], results, words, prefixes)

Eseguire il codice di esempio:

grid = ['fxie', 'amlo', 'ewbx', 'astu']
g, c = make_graph(grid)
w, p = make_lookups(grid)
res = set()
find_words(g, c, None, [], res, w, p)

e ispezionare res per vedere le risposte.Ecco una lista di parole trovare per il tuo esempio, in ordine di grandezza:

 ['a', 'b', 'e', 'f', 'i', 'l', 'm', 'o', 's', 't',
 'u', 'w', 'x', 'ae', 'am', 'as', 'aw', 'ax', 'bo',
 'bu', 'ea', 'el', 'em', 'es', 'fa', 'ie', 'io', 'li',
 'lo', 'ma', 'me', 'mi', 'oe', 'ox', 'sa', 'se', 'st',
 'tu', 'ut', 'wa', 'we', 'xi', 'aes', 'ame', 'ami',
 'ase', 'ast', 'awa', 'awe', 'awl', 'blo', 'but', 'elb',
 'elm', 'fae', 'fam', 'lei', 'lie', 'lim', 'lob', 'lox',
 'mae', 'maw', 'mew', 'mil', 'mix', 'oil', 'olm', 'saw',
 'sea', 'sew', 'swa', 'tub', 'tux', 'twa', 'wae', 'was',
 'wax', 'wem', 'ambo', 'amil', 'amli', 'asem', 'axil',
 'axle', 'bleo', 'boil', 'bole', 'east', 'fame', 'limb',
 'lime', 'mesa', 'mewl', 'mile', 'milo', 'oime', 'sawt',
 'seam', 'seax', 'semi', 'stub', 'swam', 'twae', 'twas',
 'wame', 'wase', 'wast', 'weam', 'west', 'amble', 'awest',
 'axile', 'embox', 'limbo', 'limes', 'swami', 'embole',
 'famble', 'semble', 'wamble']

Il codice porta (letteralmente) un paio di secondi per caricare il dizionario, ma il resto è istantanea sulla mia macchina.

Il mio tentativo in Java. Ci vogliono circa 2 s per leggere il file e costruire trie, e circa 50 ms per risolvere il puzzle. Ho usato il dizionario legato alla questione (che ha un paio di parole che non ho sappiamo esistere in inglese, come fae, IMA)

0 [main] INFO gineer.bogglesolver.util.Util  - Reading the dictionary
2234 [main] INFO gineer.bogglesolver.util.Util  - Finish reading the dictionary
2234 [main] INFO gineer.bogglesolver.Solver  - Found: FAM
2234 [main] INFO gineer.bogglesolver.Solver  - Found: FAME
2234 [main] INFO gineer.bogglesolver.Solver  - Found: FAMBLE
2234 [main] INFO gineer.bogglesolver.Solver  - Found: FAE
2234 [main] INFO gineer.bogglesolver.Solver  - Found: IMA
2234 [main] INFO gineer.bogglesolver.Solver  - Found: ELI
2234 [main] INFO gineer.bogglesolver.Solver  - Found: ELM
2234 [main] INFO gineer.bogglesolver.Solver  - Found: ELB
2234 [main] INFO gineer.bogglesolver.Solver  - Found: AXIL
2234 [main] INFO gineer.bogglesolver.Solver  - Found: AXILE
2234 [main] INFO gineer.bogglesolver.Solver  - Found: AXLE
2234 [main] INFO gineer.bogglesolver.Solver  - Found: AMI
2234 [main] INFO gineer.bogglesolver.Solver  - Found: AMIL
2234 [main] INFO gineer.bogglesolver.Solver  - Found: AMLI
2234 [main] INFO gineer.bogglesolver.Solver  - Found: AME
2234 [main] INFO gineer.bogglesolver.Solver  - Found: AMBLE
2234 [main] INFO gineer.bogglesolver.Solver  - Found: AMBO
2250 [main] INFO gineer.bogglesolver.Solver  - Found: AES
2250 [main] INFO gineer.bogglesolver.Solver  - Found: AWL
2250 [main] INFO gineer.bogglesolver.Solver  - Found: AWE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: AWEST
2250 [main] INFO gineer.bogglesolver.Solver  - Found: AWA
2250 [main] INFO gineer.bogglesolver.Solver  - Found: MIX
2250 [main] INFO gineer.bogglesolver.Solver  - Found: MIL
2250 [main] INFO gineer.bogglesolver.Solver  - Found: MILE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: MILO
2250 [main] INFO gineer.bogglesolver.Solver  - Found: MAX
2250 [main] INFO gineer.bogglesolver.Solver  - Found: MAE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: MAW
2250 [main] INFO gineer.bogglesolver.Solver  - Found: MEW
2250 [main] INFO gineer.bogglesolver.Solver  - Found: MEWL
2250 [main] INFO gineer.bogglesolver.Solver  - Found: MES
2250 [main] INFO gineer.bogglesolver.Solver  - Found: MESA
2250 [main] INFO gineer.bogglesolver.Solver  - Found: MWA
2250 [main] INFO gineer.bogglesolver.Solver  - Found: MWA
2250 [main] INFO gineer.bogglesolver.Solver  - Found: LIE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: LIM
2250 [main] INFO gineer.bogglesolver.Solver  - Found: LIMA
2250 [main] INFO gineer.bogglesolver.Solver  - Found: LIMAX
2250 [main] INFO gineer.bogglesolver.Solver  - Found: LIME
2250 [main] INFO gineer.bogglesolver.Solver  - Found: LIMES
2250 [main] INFO gineer.bogglesolver.Solver  - Found: LIMB
2250 [main] INFO gineer.bogglesolver.Solver  - Found: LIMBO
2250 [main] INFO gineer.bogglesolver.Solver  - Found: LIMBU
2250 [main] INFO gineer.bogglesolver.Solver  - Found: LEI
2250 [main] INFO gineer.bogglesolver.Solver  - Found: LEO
2250 [main] INFO gineer.bogglesolver.Solver  - Found: LOB
2250 [main] INFO gineer.bogglesolver.Solver  - Found: LOX
2250 [main] INFO gineer.bogglesolver.Solver  - Found: OIME
2250 [main] INFO gineer.bogglesolver.Solver  - Found: OIL
2250 [main] INFO gineer.bogglesolver.Solver  - Found: OLE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: OLM
2250 [main] INFO gineer.bogglesolver.Solver  - Found: EMIL
2250 [main] INFO gineer.bogglesolver.Solver  - Found: EMBOLE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: EMBOX
2250 [main] INFO gineer.bogglesolver.Solver  - Found: EAST
2250 [main] INFO gineer.bogglesolver.Solver  - Found: WAF
2250 [main] INFO gineer.bogglesolver.Solver  - Found: WAX
2250 [main] INFO gineer.bogglesolver.Solver  - Found: WAME
2250 [main] INFO gineer.bogglesolver.Solver  - Found: WAMBLE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: WAE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: WEA
2250 [main] INFO gineer.bogglesolver.Solver  - Found: WEAM
2250 [main] INFO gineer.bogglesolver.Solver  - Found: WEM
2250 [main] INFO gineer.bogglesolver.Solver  - Found: WEA
2250 [main] INFO gineer.bogglesolver.Solver  - Found: WES
2250 [main] INFO gineer.bogglesolver.Solver  - Found: WEST
2250 [main] INFO gineer.bogglesolver.Solver  - Found: WAE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: WAS
2250 [main] INFO gineer.bogglesolver.Solver  - Found: WASE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: WAST
2250 [main] INFO gineer.bogglesolver.Solver  - Found: BLEO
2250 [main] INFO gineer.bogglesolver.Solver  - Found: BLO
2250 [main] INFO gineer.bogglesolver.Solver  - Found: BOIL
2250 [main] INFO gineer.bogglesolver.Solver  - Found: BOLE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: BUT
2250 [main] INFO gineer.bogglesolver.Solver  - Found: AES
2250 [main] INFO gineer.bogglesolver.Solver  - Found: AWA
2250 [main] INFO gineer.bogglesolver.Solver  - Found: AWL
2250 [main] INFO gineer.bogglesolver.Solver  - Found: AWE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: AWEST
2250 [main] INFO gineer.bogglesolver.Solver  - Found: ASE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: ASEM
2250 [main] INFO gineer.bogglesolver.Solver  - Found: AST
2250 [main] INFO gineer.bogglesolver.Solver  - Found: SEA
2250 [main] INFO gineer.bogglesolver.Solver  - Found: SEAX
2250 [main] INFO gineer.bogglesolver.Solver  - Found: SEAM
2250 [main] INFO gineer.bogglesolver.Solver  - Found: SEMI
2250 [main] INFO gineer.bogglesolver.Solver  - Found: SEMBLE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: SEW
2250 [main] INFO gineer.bogglesolver.Solver  - Found: SEA
2250 [main] INFO gineer.bogglesolver.Solver  - Found: SWA
2250 [main] INFO gineer.bogglesolver.Solver  - Found: SWAM
2250 [main] INFO gineer.bogglesolver.Solver  - Found: SWAMI
2250 [main] INFO gineer.bogglesolver.Solver  - Found: SWA
2250 [main] INFO gineer.bogglesolver.Solver  - Found: SAW
2250 [main] INFO gineer.bogglesolver.Solver  - Found: SAWT
2250 [main] INFO gineer.bogglesolver.Solver  - Found: STU
2250 [main] INFO gineer.bogglesolver.Solver  - Found: STUB
2250 [main] INFO gineer.bogglesolver.Solver  - Found: TWA
2250 [main] INFO gineer.bogglesolver.Solver  - Found: TWAE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: TWA
2250 [main] INFO gineer.bogglesolver.Solver  - Found: TWAE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: TWAS
2250 [main] INFO gineer.bogglesolver.Solver  - Found: TUB
2250 [main] INFO gineer.bogglesolver.Solver  - Found: TUX

Il codice sorgente è costituito da 6 classi. Vi posto loro qui di seguito (se questa non è la giusta pratica su StackOverflow, mi dica).

gineer.bogglesolver.Main

package gineer.bogglesolver;

import org.apache.log4j.BasicConfigurator;
import org.apache.log4j.Logger;

public class Main
{
    private final static Logger logger = Logger.getLogger(Main.class);

    public static void main(String[] args)
    {
        BasicConfigurator.configure();

        Solver solver = new Solver(4,
                        "FXIE" +
                        "AMLO" +
                        "EWBX" +
                        "ASTU");
        solver.solve();

    }
}

gineer.bogglesolver.Solver

package gineer.bogglesolver;

import gineer.bogglesolver.trie.Trie;
import gineer.bogglesolver.util.Constants;
import gineer.bogglesolver.util.Util;
import org.apache.log4j.Logger;

public class Solver
{
    private char[] puzzle;
    private int maxSize;

    private boolean[] used;
    private StringBuilder stringSoFar;

    private boolean[][] matrix;
    private Trie trie;

    private final static Logger logger = Logger.getLogger(Solver.class);

    public Solver(int size, String puzzle)
    {
        trie = Util.getTrie(size);
        matrix = Util.connectivityMatrix(size);

        maxSize = size * size;
        stringSoFar = new StringBuilder(maxSize);
        used = new boolean[maxSize];

        if (puzzle.length() == maxSize)
        {
            this.puzzle = puzzle.toCharArray();
        }
        else
        {
            logger.error("The puzzle size does not match the size specified: " + puzzle.length());
            this.puzzle = puzzle.substring(0, maxSize).toCharArray();
        }
    }

    public void solve()
    {
        for (int i = 0; i < maxSize; i++)
        {
            traverseAt(i);
        }
    }

    private void traverseAt(int origin)
    {
        stringSoFar.append(puzzle[origin]);
        used[origin] = true;

        //Check if we have a valid word
        if ((stringSoFar.length() >= Constants.MINIMUM_WORD_LENGTH) && (trie.containKey(stringSoFar.toString())))
        {
            logger.info("Found: " + stringSoFar.toString());
        }

        //Find where to go next
        for (int destination = 0; destination < maxSize; destination++)
        {
            if (matrix[origin][destination] && !used[destination] && trie.containPrefix(stringSoFar.toString() + puzzle[destination]))
            {
                traverseAt(destination);
            }
        }

        used[origin] = false;
        stringSoFar.deleteCharAt(stringSoFar.length() - 1);
    }

}

gineer.bogglesolver.trie.Node

package gineer.bogglesolver.trie;

import gineer.bogglesolver.util.Constants;

class Node
{
    Node[] children;
    boolean isKey;

    public Node()
    {
        isKey = false;
        children = new Node[Constants.NUMBER_LETTERS_IN_ALPHABET];
    }

    public Node(boolean key)
    {
        isKey = key;
        children = new Node[Constants.NUMBER_LETTERS_IN_ALPHABET];
    }

    /**
     Method to insert a string to Node and its children

     @param key the string to insert (the string is assumed to be uppercase)
     @return true if the node or one of its children is changed, false otherwise
     */
    public boolean insert(String key)
    {
        //If the key is empty, this node is a key
        if (key.length() == 0)
        {
            if (isKey)
                return false;
            else
            {
                isKey = true;
                return true;
            }
        }
        else
        {//otherwise, insert in one of its child

            int childNodePosition = key.charAt(0) - Constants.LETTER_A;
            if (children[childNodePosition] == null)
            {
                children[childNodePosition] = new Node();
                children[childNodePosition].insert(key.substring(1));
                return true;
            }
            else
            {
                return children[childNodePosition].insert(key.substring(1));
            }
        }
    }

    /**
     Returns whether key is a valid prefix for certain key in this trie.
     For example: if key "hello" is in this trie, tests with all prefixes "hel", "hell", "hello" return true

     @param prefix the prefix to check
     @return true if the prefix is valid, false otherwise
     */
    public boolean containPrefix(String prefix)
    {
        //If the prefix is empty, return true
        if (prefix.length() == 0)
        {
            return true;
        }
        else
        {//otherwise, check in one of its child
            int childNodePosition = prefix.charAt(0) - Constants.LETTER_A;
            return children[childNodePosition] != null && children[childNodePosition].containPrefix(prefix.substring(1));
        }
    }

    /**
     Returns whether key is a valid key in this trie.
     For example: if key "hello" is in this trie, tests with all prefixes "hel", "hell" return false

     @param key the key to check
     @return true if the key is valid, false otherwise
     */
    public boolean containKey(String key)
    {
        //If the prefix is empty, return true
        if (key.length() == 0)
        {
            return isKey;
        }
        else
        {//otherwise, check in one of its child
            int childNodePosition = key.charAt(0) - Constants.LETTER_A;
            return children[childNodePosition] != null && children[childNodePosition].containKey(key.substring(1));
        }
    }

    public boolean isKey()
    {
        return isKey;
    }

    public void setKey(boolean key)
    {
        isKey = key;
    }
}

gineer.bogglesolver.trie.Trie

package gineer.bogglesolver.trie;

public class Trie
{
    Node root;

    public Trie()
    {
        this.root = new Node();
    }

    /**
     Method to insert a string to Node and its children

     @param key the string to insert (the string is assumed to be uppercase)
     @return true if the node or one of its children is changed, false otherwise
     */
    public boolean insert(String key)
    {
        return root.insert(key.toUpperCase());
    }

    /**
     Returns whether key is a valid prefix for certain key in this trie.
     For example: if key "hello" is in this trie, tests with all prefixes "hel", "hell", "hello" return true

     @param prefix the prefix to check
     @return true if the prefix is valid, false otherwise
     */
    public boolean containPrefix(String prefix)
    {
        return root.containPrefix(prefix.toUpperCase());
    }

    /**
     Returns whether key is a valid key in this trie.
     For example: if key "hello" is in this trie, tests with all prefixes "hel", "hell" return false

     @param key the key to check
     @return true if the key is valid, false otherwise
     */
    public boolean containKey(String key)
    {
        return root.containKey(key.toUpperCase());
    }


}

gineer.bogglesolver.util.Constants

package gineer.bogglesolver.util;

public class Constants
{

    public static final int NUMBER_LETTERS_IN_ALPHABET = 26;
    public static final char LETTER_A = 'A';
    public static final int MINIMUM_WORD_LENGTH = 3;
    public static final int DEFAULT_PUZZLE_SIZE = 4;
}

gineer.bogglesolver.util.Util

package gineer.bogglesolver.util;

import gineer.bogglesolver.trie.Trie;
import org.apache.log4j.Logger;

import java.io.File;
import java.io.FileNotFoundException;
import java.util.Scanner;

public class Util
{
    private final static Logger logger = Logger.getLogger(Util.class);
    private static Trie trie;
    private static int size = Constants.DEFAULT_PUZZLE_SIZE;

    /**
     Returns the trie built from the dictionary.  The size is used to eliminate words that are too long.

     @param size the size of puzzle.  The maximum lenght of words in the returned trie is (size * size)
     @return the trie that can be used for puzzle of that size
     */
    public static Trie getTrie(int size)
    {
        if ((trie != null) && size == Util.size)
            return trie;

        trie = new Trie();
        Util.size = size;

        logger.info("Reading the dictionary");
        final File file = new File("dictionary.txt");
        try
        {
            Scanner scanner = new Scanner(file);
            final int maxSize = size * size;
            while (scanner.hasNext())
            {
                String line = scanner.nextLine().replaceAll("[^\\p{Alpha}]", "");

                if (line.length() <= maxSize)
                    trie.insert(line);
            }
        }
        catch (FileNotFoundException e)
        {
            logger.error("Cannot open file", e);
        }

        logger.info("Finish reading the dictionary");
        return trie;
    }

    static boolean[] connectivityRow(int x, int y, int size)
    {
        boolean[] squares = new boolean[size * size];
        for (int offsetX = -1; offsetX <= 1; offsetX++)
        {
            for (int offsetY = -1; offsetY <= 1; offsetY++)
            {
                final int calX = x + offsetX;
                final int calY = y + offsetY;
                if ((calX >= 0) && (calX < size) && (calY >= 0) && (calY < size))
                    squares[calY * size + calX] = true;
            }
        }

        squares[y * size + x] = false;//the current x, y is false

        return squares;
    }

    /**
     Returns the matrix of connectivity between two points.  Point i can go to point j iff matrix[i][j] is true
     Square (x, y) is equivalent to point (size * y + x).  For example, square (1,1) is point 5 in a puzzle of size 4

     @param size the size of the puzzle
     @return the connectivity matrix
     */
    public static boolean[][] connectivityMatrix(int size)
    {
        boolean[][] matrix = new boolean[size * size][];
        for (int x = 0; x < size; x++)
        {
            for (int y = 0; y < size; y++)
            {
                matrix[y * size + x] = connectivityRow(x, y, size);
            }
        }
        return matrix;
    }
}

Credo che probabilmente si passano la maggior parte del vostro tempo cercando di abbinare parole che non possono eventualmente essere costruiti da griglia lettera. Quindi, la prima cosa che vorrei fare è cercare di accelerare quel passo e che dovrebbe ottenere la maggior parte del tragitto.

Per questo, vorrei ri-esprimere la griglia come una tabella di possibili "mosse" che indice dalla lettera di transizione che si sta guardando.

Inizia assegnando ogni lettera un numero dalla intero alfabeto (A = 0, B = 1, C = 2, ... e così via).

Prendiamo questo esempio:

h b c d
e e g h
l l k l
m o f p

E per ora, consente di utilizzare l'alfabeto delle lettere che abbiamo (di solito si sarebbe probabilmente desidera utilizzare lo stesso intero alfabeto ogni volta):

 b | c | d | e | f | g | h | k | l | m |  o |  p
---+---+---+---+---+---+---+---+---+---+----+----
 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11

Poi fate una matrice booleana 2D che dice se si dispone di una certa lettera di transizione disponibili:

     |  0  1  2  3  4  5  6  7  8  9 10 11  <- from letter
     |  b  c  d  e  f  g  h  k  l  m  o  p
-----+--------------------------------------
 0 b |     T     T     T  T     
 1 c |  T     T  T     T  T
 2 d |     T           T  T
 3 e |  T  T     T     T  T  T  T
 4 f |                       T  T     T  T
 5 g |  T  T  T  T        T  T  T
 6 h |  T  T  T  T     T     T  T
 7 k |           T  T  T  T     T     T  T
 8 l |           T  T  T  T  T  T  T  T  T
 9 m |                          T     T
10 o |              T        T  T  T
11 p |              T        T  T
 ^
 to letter

Ora passare attraverso la vostra lista di parola e convertire le parole alle transizioni:

hello (6, 3, 8, 8, 10):
6 -> 3, 3 -> 8, 8 -> 8, 8 -> 10

Quindi verificare se queste transizioni sono autorizzati da loro guardando in alto nella tabella:

[6][ 3] : T
[3][ 8] : T
[8][ 8] : T
[8][10] : T

Se sono tutti autorizzati, c'è una possibilità che questa parola potrebbe essere trovato.

Ad esempio la parola "casco" si può escludere il 4 di transizione (m all'e: casco)., Dal momento che l'ingresso nella tabella è falsa

E la parola criceto si può escludere, in quanto la prima (h ad a) la transizione non è consentito (non esiste nemmeno nella tabella).

Ora, per i probabilmente pochissime parole rimanenti che non ha eliminato, tenta di trovarli in realtà nella griglia il modo in cui si sta facendo ora o come suggerito in alcune delle altre risposte qui. Questo per evitare falsi positivi che derivano da salti tra le lettere identiche in griglia. Per esempio, la parola "help" è consentito dal tavolo, ma non dalla griglia.

Ulteriori suggerimenti di miglioramento delle prestazioni su questa idea:

  1. Invece di usare una matrice 2D, utilizzare un array 1D e semplicemente calcolare l'indice della seconda lettera stessi. Così, invece di un array 12x12 come sopra, fare una serie 1D di lunghezza 144. Se quindi si utilizza sempre lo stesso alfabeto (cioè un 26x26 = 676x1 array per l'alfabeto inglese standard), anche se non tutte le lettere appaiono nella griglia , è possibile pre-calcolare gli indici in questo array 1D che è necessario testare per soddisfare le vostre parole del dizionario. Ad esempio, gli indici di 'ciao' nell'esempio precedente sarebbe

    hello (6, 3, 8, 8, 10):
    42 (from 6 + 3x12), 99, 104, 128
    -> "hello" will be stored as 42, 99, 104, 128 in the dictionary
    
  2. estendere l'idea di una tabella 3D (espresso come array 1D), cioè tutte le combinazioni consentite 3 lettere. In questo modo è possibile eliminare anche più parole immediatamente e ridurre il numero di ricerche di matrice per ogni parola da 1: Per 'ciao', è necessario solo 3 le ricerche di matrice: Hel, ell, llo. Sarà molto veloci da costruire questa tabella, tra l'altro, come ci sono solo 400 possibili 3-lettera-si muove in griglia.

  3. pre-calcolare gli indici delle mosse in griglia che è necessario includere nella tabella. Per l'esempio di cui sopra, è necessario impostare le seguenti voci di 'True':

    (0,0) (0,1) -> here: h, b : [6][0]
    (0,0) (1,0) -> here: h, e : [6][3]
    (0,0) (1,1) -> here: h, e : [6][3]
    (0,1) (0,0) -> here: b, h : [0][6]
    (0,1) (0,2) -> here: b, c : [0][1]
    .
    :
    
  4. rappresentano anche la griglia gioco in una matrice 1-D con 16 voci e hanno la tabella pre-calcolata in 3. contengono gli indici in questa matrice.

Sono sicuro che se si utilizza questo approccio è possibile ottenere il codice per eseguire follemente veloce, se avete la dizionario pre-calcolato e già caricato in memoria.

A proposito: Un'altra cosa carina da fare, se si sta costruendo un gioco, è quello di eseguire questo genere di cose immediatamente in background. Iniziare a generare e risolvere il primo gioco mentre l'utente sta ancora cercando nella schermata dei titoli sul app e ottenere il suo dito in grado di premere il tasto "Play". Poi generare e risolvere il gioco successivo come l'utente riproduce quella precedente. Questo dovrebbe dare un sacco di tempo per eseguire il codice.

(mi piace questo problema, così io probabilmente tentato di implementare la mia proposta in Java volte nei prossimi giorni per vedere come sarebbe effettivamente svolgere ... Vi posto il codice qui una volta che faccio.)

UPDATE:

Ok, ho avuto un po 'di tempo oggi e implementato questa idea in Java:

class DictionaryEntry {
  public int[] letters;
  public int[] triplets;
}

class BoggleSolver {

  // Constants
  final int ALPHABET_SIZE = 5;  // up to 2^5 = 32 letters
  final int BOARD_SIZE    = 4;  // 4x4 board
  final int[] moves = {-BOARD_SIZE-1, -BOARD_SIZE, -BOARD_SIZE+1, 
                                  -1,                         +1,
                       +BOARD_SIZE-1, +BOARD_SIZE, +BOARD_SIZE+1};


  // Technically constant (calculated here for flexibility, but should be fixed)
  DictionaryEntry[] dictionary; // Processed word list
  int maxWordLength = 0;
  int[] boardTripletIndices; // List of all 3-letter moves in board coordinates

  DictionaryEntry[] buildDictionary(String fileName) throws IOException {
    BufferedReader fileReader = new BufferedReader(new FileReader(fileName));
    String word = fileReader.readLine();
    ArrayList<DictionaryEntry> result = new ArrayList<DictionaryEntry>();
    while (word!=null) {
      if (word.length()>=3) {
        word = word.toUpperCase();
        if (word.length()>maxWordLength) maxWordLength = word.length();
        DictionaryEntry entry = new DictionaryEntry();
        entry.letters  = new int[word.length()  ];
        entry.triplets = new int[word.length()-2];
        int i=0;
        for (char letter: word.toCharArray()) {
          entry.letters[i] = (byte) letter - 65; // Convert ASCII to 0..25
          if (i>=2)
            entry.triplets[i-2] = (((entry.letters[i-2]  << ALPHABET_SIZE) +
                                     entry.letters[i-1]) << ALPHABET_SIZE) +
                                     entry.letters[i];
          i++;
        }
        result.add(entry);
      }
      word = fileReader.readLine();
    }
    return result.toArray(new DictionaryEntry[result.size()]);
  }

  boolean isWrap(int a, int b) { // Checks if move a->b wraps board edge (like 3->4)
    return Math.abs(a%BOARD_SIZE-b%BOARD_SIZE)>1;
  }

  int[] buildTripletIndices() {
    ArrayList<Integer> result = new ArrayList<Integer>();
    for (int a=0; a<BOARD_SIZE*BOARD_SIZE; a++)
      for (int bm: moves) {
        int b=a+bm;
        if ((b>=0) && (b<board.length) && !isWrap(a, b))
          for (int cm: moves) {
            int c=b+cm;
            if ((c>=0) && (c<board.length) && (c!=a) && !isWrap(b, c)) {
              result.add(a);
              result.add(b);
              result.add(c);
            }
          }
      }
    int[] result2 = new int[result.size()];
    int i=0;
    for (Integer r: result) result2[i++] = r;
    return result2;
  }


  // Variables that depend on the actual game layout
  int[] board = new int[BOARD_SIZE*BOARD_SIZE]; // Letters in board
  boolean[] possibleTriplets = new boolean[1 << (ALPHABET_SIZE*3)];

  DictionaryEntry[] candidateWords;
  int candidateCount;

  int[] usedBoardPositions;

  DictionaryEntry[] foundWords;
  int foundCount;

  void initializeBoard(String[] letters) {
    for (int row=0; row<BOARD_SIZE; row++)
      for (int col=0; col<BOARD_SIZE; col++)
        board[row*BOARD_SIZE + col] = (byte) letters[row].charAt(col) - 65;
  }

  void setPossibleTriplets() {
    Arrays.fill(possibleTriplets, false); // Reset list
    int i=0;
    while (i<boardTripletIndices.length) {
      int triplet = (((board[boardTripletIndices[i++]]  << ALPHABET_SIZE) +
                       board[boardTripletIndices[i++]]) << ALPHABET_SIZE) +
                       board[boardTripletIndices[i++]];
      possibleTriplets[triplet] = true; 
    }
  }

  void checkWordTriplets() {
    candidateCount = 0;
    for (DictionaryEntry entry: dictionary) {
      boolean ok = true;
      int len = entry.triplets.length;
      for (int t=0; (t<len) && ok; t++)
        ok = possibleTriplets[entry.triplets[t]];
      if (ok) candidateWords[candidateCount++] = entry;
    }
  }

  void checkWords() { // Can probably be optimized a lot
    foundCount = 0;
    for (int i=0; i<candidateCount; i++) {
      DictionaryEntry candidate = candidateWords[i];
      for (int j=0; j<board.length; j++)
        if (board[j]==candidate.letters[0]) { 
          usedBoardPositions[0] = j;
          if (checkNextLetters(candidate, 1, j)) {
            foundWords[foundCount++] = candidate;
            break;
          }
        }
    }
  }

  boolean checkNextLetters(DictionaryEntry candidate, int letter, int pos) {
    if (letter==candidate.letters.length) return true;
    int match = candidate.letters[letter];
    for (int move: moves) {
      int next=pos+move;
      if ((next>=0) && (next<board.length) && (board[next]==match) && !isWrap(pos, next)) {
        boolean ok = true;
        for (int i=0; (i<letter) && ok; i++)
          ok = usedBoardPositions[i]!=next;
        if (ok) {
          usedBoardPositions[letter] = next;
          if (checkNextLetters(candidate, letter+1, next)) return true;
        }
      }
    }   
    return false;
  }


  // Just some helper functions
  String formatTime(long start, long end, long repetitions) {
    long time = (end-start)/repetitions;
    return time/1000000 + "." + (time/100000) % 10 + "" + (time/10000) % 10 + "ms";
  }

  String getWord(DictionaryEntry entry) {
    char[] result = new char[entry.letters.length];
    int i=0;
    for (int letter: entry.letters)
      result[i++] = (char) (letter+97);
    return new String(result);
  }

  void run() throws IOException {
    long start = System.nanoTime();

    // The following can be pre-computed and should be replaced by constants
    dictionary = buildDictionary("C:/TWL06.txt");
    boardTripletIndices = buildTripletIndices();
    long precomputed = System.nanoTime();


    // The following only needs to run once at the beginning of the program
    candidateWords     = new DictionaryEntry[dictionary.length]; // WAAAY too generous
    foundWords         = new DictionaryEntry[dictionary.length]; // WAAAY too generous
    usedBoardPositions = new int[maxWordLength];
    long initialized = System.nanoTime(); 

    for (int n=1; n<=100; n++) {
      // The following needs to run again for every new board
      initializeBoard(new String[] {"DGHI",
                                    "KLPS",
                                    "YEUT",
                                    "EORN"});
      setPossibleTriplets();
      checkWordTriplets();
      checkWords();
    }
    long solved = System.nanoTime();


    // Print out result and statistics
    System.out.println("Precomputation finished in " + formatTime(start, precomputed, 1)+":");
    System.out.println("  Words in the dictionary: "+dictionary.length);
    System.out.println("  Longest word:            "+maxWordLength+" letters");
    System.out.println("  Number of triplet-moves: "+boardTripletIndices.length/3);
    System.out.println();

    System.out.println("Initialization finished in " + formatTime(precomputed, initialized, 1));
    System.out.println();

    System.out.println("Board solved in "+formatTime(initialized, solved, 100)+":");
    System.out.println("  Number of candidates: "+candidateCount);
    System.out.println("  Number of actual words: "+foundCount);
    System.out.println();

    System.out.println("Words found:");
    int w=0;
    System.out.print("  ");
    for (int i=0; i<foundCount; i++) {
      System.out.print(getWord(foundWords[i]));
      w++;
      if (w==10) {
        w=0;
        System.out.println(); System.out.print("  ");
      } else
        if (i<foundCount-1) System.out.print(", ");
    }
    System.out.println();
  }

  public static void main(String[] args) throws IOException {
    new BoggleSolver().run();
  }
}

Ecco alcuni risultati:

Per la griglia dalla foto pubblicata nella domanda iniziale (DGHI ...):

Precomputation finished in 239.59ms:
  Words in the dictionary: 178590
  Longest word:            15 letters
  Number of triplet-moves: 408

Initialization finished in 0.22ms

Board solved in 3.70ms:
  Number of candidates: 230
  Number of actual words: 163 

Words found:
  eek, eel, eely, eld, elhi, elk, ern, erupt, erupts, euro
  eye, eyer, ghi, ghis, glee, gley, glue, gluer, gluey, glut
  gluts, hip, hiply, hips, his, hist, kelp, kelps, kep, kepi
  kepis, keps, kept, kern, key, kye, lee, lek, lept, leu
  ley, lunt, lunts, lure, lush, lust, lustre, lye, nus, nut
  nuts, ore, ort, orts, ouph, ouphs, our, oust, out, outre
  outs, oyer, pee, per, pert, phi, phis, pis, pish, plus
  plush, ply, plyer, psi, pst, pul, pule, puler, pun, punt
  punts, pur, pure, puree, purely, pus, push, put, puts, ree
  rely, rep, reply, reps, roe, roue, roup, roups, roust, rout
  routs, rue, rule, ruly, run, runt, runts, rupee, rush, rust
  rut, ruts, ship, shlep, sip, sipe, spue, spun, spur, spurn
  spurt, strep, stroy, stun, stupe, sue, suer, sulk, sulker, sulky
  sun, sup, supe, super, sure, surely, tree, trek, trey, troupe
  troy, true, truly, tule, tun, tup, tups, turn, tush, ups
  urn, uts, yeld, yelk, yelp, yelps, yep, yeps, yore, you
  your, yourn, yous

Per le lettere pubblicate come l'esempio nella domanda iniziale (FXIE ...)

Precomputation finished in 239.68ms:
  Words in the dictionary: 178590
  Longest word:            15 letters
  Number of triplet-moves: 408

Initialization finished in 0.21ms

Board solved in 3.69ms:
  Number of candidates: 87
  Number of actual words: 76

Words found:
  amble, ambo, ami, amie, asea, awa, awe, awes, awl, axil
  axile, axle, boil, bole, box, but, buts, east, elm, emboli
  fame, fames, fax, lei, lie, lima, limb, limbo, limbs, lime
  limes, lob, lobs, lox, mae, maes, maw, maws, max, maxi
  mesa, mew, mewl, mews, mil, mile, milo, mix, oil, ole
  sae, saw, sea, seam, semi, sew, stub, swam, swami, tub
  tubs, tux, twa, twae, twaes, twas, uts, wae, waes, wamble
  wame, wames, was, wast, wax, west

Per il seguente 5x5-grid:

R P R I T
A H H L N
I E T E P
Z R Y S G
O G W E Y

dà questo:

Precomputation finished in 240.39ms:
  Words in the dictionary: 178590
  Longest word:            15 letters
  Number of triplet-moves: 768

Initialization finished in 0.23ms

Board solved in 3.85ms:
  Number of candidates: 331
  Number of actual words: 240

Words found:
  aero, aery, ahi, air, airt, airth, airts, airy, ear, egest
  elhi, elint, erg, ergo, ester, eth, ether, eye, eyen, eyer
  eyes, eyre, eyrie, gel, gelt, gelts, gen, gent, gentil, gest
  geste, get, gets, gey, gor, gore, gory, grey, greyest, greys
  gyre, gyri, gyro, hae, haet, haets, hair, hairy, hap, harp
  heap, hear, heh, heir, help, helps, hen, hent, hep, her
  hero, hes, hest, het, hetero, heth, hets, hey, hie, hilt
  hilts, hin, hint, hire, hit, inlet, inlets, ire, leg, leges
  legs, lehr, lent, les, lest, let, lethe, lets, ley, leys
  lin, line, lines, liney, lint, lit, neg, negs, nest, nester
  net, nether, nets, nil, nit, ogre, ore, orgy, ort, orts
  pah, pair, par, peg, pegs, peh, pelt, pelter, peltry, pelts
  pen, pent, pes, pest, pester, pesty, pet, peter, pets, phi
  philter, philtre, phiz, pht, print, pst, rah, rai, rap, raphe
  raphes, reap, rear, rei, ret, rete, rets, rhaphe, rhaphes, rhea
  ria, rile, riles, riley, rin, rye, ryes, seg, sel, sen
  sent, senti, set, sew, spelt, spelter, spent, splent, spline, splint
  split, stent, step, stey, stria, striae, sty, stye, tea, tear
  teg, tegs, tel, ten, tent, thae, the, their, then, these
  thesp, they, thin, thine, thir, thirl, til, tile, tiles, tilt
  tilter, tilth, tilts, tin, tine, tines, tirl, trey, treys, trog
  try, tye, tyer, tyes, tyre, tyro, west, wester, wry, wryest
  wye, wyes, wyte, wytes, yea, yeah, year, yeh, yelp, yelps
  yen, yep, yeps, yes, yester, yet, yew, yews, zero, zori

Per questo ho usato il TWL06 Torneo Scrabble Word List , dal momento che il link nella domanda iniziale non funziona più . Questo file è 1.85MB, quindi è un po 'più breve. E la funzione buildDictionary butta fuori tutte le parole con meno di 3 lettere.

Ecco un paio di osservazioni circa le prestazioni di questo:

  • E 'di circa 10 volte più lento del andamenti di implementazione OCaml di Victor Nicollet. Se questo è causato dal diverso algoritmo, il dizionario più breve ha usato, il fatto che il suo codice viene compilato e la mia viene eseguito in una macchina virtuale Java, o le prestazioni dei nostri computer (il mio è un Intel Q6600 @ 2.4MHz in esecuzione WinXP), Non lo so. Ma è molto più veloce rispetto i risultati per le altre implementazioni citate alla fine della domanda originale. Quindi, se questo algoritmo è superiore al dizionario trie o no, non so, a questo punto.

  • Il metodo tabella utilizzata in checkWordTriplets() produce una buona approssimazione le risposte reali. Solo 1 in 3-5 parole passati da essa fallirà la prova checkWords() (Vedere numero di candidati vs numero di parole effettive sopra).

  • Qualcosa non è possibile vedere sopra: La funzione checkWordTriplets() dura circa 3.65ms ed è pertanto pienamente dominante nel processo di ricerca. La funzione checkWords() occupa praticamente i restanti 0.05-0.20 ms.

  • Il tempo di esecuzione della funzione checkWordTriplets() dipende linearmente dalla dimensione dizionario ed è praticamente indipendente dalla dimensione del bordo!

  • Il tempo di esecuzione checkWords() dipende dalle dimensioni della scheda e il numero di parole non esclusa da checkWordTriplets().

  • L'implementazione checkWords() sopra è la più stupida prima versione mi è venuta. Non è fondamentalmente ottimizzato affatto. Ma rispetto a checkWordTriplets() è irrilevante per la performance complessiva della domanda, quindi non mi preoccupo a questo proposito. Ma , se la dimensione del consiglio diventa più grande, questa funzione sarà sempre più lento e alla fine iniziare alla materia. Poi, avrebbe bisogno di essere ottimizzato pure.

  • Una cosa bella di questo codice è la sua flessibilità:

    • Si può facilmente cambiare il formato del bordo:. Aggiornamento linea 10 e la matrice stringa passata a initializeBoard()
    • E 'in grado di supportare più grandi / alfabeti diversi e in grado di gestire le cose come trattamento 'Qu' come una lettera senza alcun sovraccarico delle prestazioni. Per fare questo, si potrebbe essere necessario aggiornare la linea 9 e il paio di posti in cui i personaggi vengono convertite in numeri (attualmente semplicemente sottraendo 65 dal valore ASCII)

Ok, ma credo che ormai questo post è troppo sopravvalutato abbastanza a lungo. Posso sicuramente rispondere a qualsiasi domanda che potreste avere, ma passiamo che ai commenti.

Sorprendentemente, nessuno ha tentato una versione di PHP di questo.

Questa è una versione di PHP di lavoro della soluzione di Python di John Fouhy.

Anche se ho preso alcune indicazioni da risposte di tutti gli altri, questo è in gran parte copiato da Giovanni.

$boggle = "fxie
           amlo
           ewbx
           astu";

$alphabet = str_split(str_replace(array("\n", " ", "\r"), "", strtolower($boggle)));
$rows = array_map('trim', explode("\n", $boggle));
$dictionary = file("C:/dict.txt");
$prefixes = array(''=>'');
$words = array();
$regex = '/[' . implode('', $alphabet) . ']{3,}$/S';
foreach($dictionary as $k=>$value) {
    $value = trim(strtolower($value));
    $length = strlen($value);
    if(preg_match($regex, $value)) {
        for($x = 0; $x < $length; $x++) {
            $letter = substr($value, 0, $x+1);
            if($letter == $value) {
                $words[$value] = 1;
            } else {
                $prefixes[$letter] = 1;
            }
        }
    }
}

$graph = array();
$chardict = array();
$positions = array();
$c = count($rows);
for($i = 0; $i < $c; $i++) {
    $l = strlen($rows[$i]);
    for($j = 0; $j < $l; $j++) {
        $chardict[$i.','.$j] = $rows[$i][$j];
        $children = array();
        $pos = array(-1,0,1);
        foreach($pos as $z) {
            $xCoord = $z + $i;
            if($xCoord < 0 || $xCoord >= count($rows)) {
                continue;
            }
            $len = strlen($rows[0]);
            foreach($pos as $w) {
                $yCoord = $j + $w;
                if(($yCoord < 0 || $yCoord >= $len) || ($z == 0 && $w == 0)) {
                    continue;
                }
                $children[] = array($xCoord, $yCoord);
            }
        }
        $graph['None'][] = array($i, $j);
        $graph[$i.','.$j] = $children;
    }
}

function to_word($chardict, $prefix) {
    $word = array();
    foreach($prefix as $v) {
        $word[] = $chardict[$v[0].','.$v[1]];
    }
    return implode("", $word);
}

function find_words($graph, $chardict, $position, $prefix, $prefixes, &$results, $words) {
    $word = to_word($chardict, $prefix);
    if(!isset($prefixes[$word])) return false;

    if(isset($words[$word])) {
        $results[] = $word;
    }

    foreach($graph[$position] as $child) {
        if(!in_array($child, $prefix)) {
            $newprefix = $prefix;
            $newprefix[] = $child;
            find_words($graph, $chardict, $child[0].','.$child[1], $newprefix, $prefixes, $results, $words);
        }
    }
}

$solution = array();
find_words($graph, $chardict, 'None', array(), $prefixes, $solution);
print_r($solution);

Ecco un collegamento in tensione se si vuole provare. Anche se ci vuole ~ 2s nella mia macchina locale, ci vuole ~ 5s sul mio webserver. In entrambi i casi, non è molto veloce. Ancora, però, è abbastanza orrendo quindi posso immaginare il tempo può essere ridotto in modo significativo. Eventuali indicazioni su come realizzare questo sarebbe apprezzato. mancanza di tuple di PHP ha reso le coordinate strani con cui lavorare e la mia incapacità di comprendere cosa diavolo sta succedendo non ha aiutato affatto.

Modifica :. Poche correzioni rendono prendere meno di 1s localmente

Non sono interessato al VB? :) Non ho potuto resistere. Ho risolto in modo diverso rispetto a molte delle soluzioni presentate qui.

I miei orari sono:

  • Caricamento dizionario e parola prefissi in una tabella hash:. 0,5 a 1 secondo
  • Trovare le parole: una media inferiore a 10 millisecondi
  • .

EDIT: Dizionario tempi di caricamento sul server host web sono in esecuzione circa 1 a 1,5 secondi in più rispetto al mio computer di casa

.

Non so quanto male i tempi si deteriorano con un carico sul server.

ho scritto la mia soluzione, come una pagina web in .Net. myvrad.com/boggle

Sto utilizzando il dizionario si fa riferimento nella domanda iniziale.

Le lettere non vengono riutilizzati in una parola. Solo parole 3 o più caratteri si trovano.

sto usando una tabella hash di tutti i prefissi di parole uniche e le parole invece di un trie. Non sapevo di trie di così ho imparato qualcosa. L'idea di creare un elenco di prefissi di parole in aggiunta alle parole complete è quello che finalmente i miei tempi fino a un numero di tutto rispetto.

Leggi i commenti di codice per ulteriori dettagli.

Ecco il codice:

Imports System.Collections.Generic
Imports System.IO

Partial Class boggle_Default

    'Bob Archer, 4/15/2009

    'To avoid using a 2 dimensional array in VB I'm not using typical X,Y
    'coordinate iteration to find paths.
    '
    'I have locked the code into a 4 by 4 grid laid out like so:
    ' abcd
    ' efgh
    ' ijkl
    ' mnop
    ' 
    'To find paths the code starts with a letter from a to p then
    'explores the paths available around it. If a neighboring letter
    'already exists in the path then we don't go there.
    '
    'Neighboring letters (grid points) are hard coded into
    'a Generic.Dictionary below.



    'Paths is a list of only valid Paths found. 
    'If a word prefix or word is not found the path is not
    'added and extending that path is terminated.
    Dim Paths As New Generic.List(Of String)

    'NeighborsOf. The keys are the letters a to p.
    'The value is a string of letters representing neighboring letters.
    'The string of neighboring letters is split and iterated later.
    Dim NeigborsOf As New Generic.Dictionary(Of String, String)

    'BoggleLetters. The keys are mapped to the lettered grid of a to p.
    'The values are what the user inputs on the page.
    Dim BoggleLetters As New Generic.Dictionary(Of String, String)

    'Used to store last postition of path. This will be a letter
    'from a to p.
    Dim LastPositionOfPath As String = ""

    'I found a HashTable was by far faster than a Generic.Dictionary 
    ' - about 10 times faster. This stores prefixes of words and words.
    'I determined 792773 was the number of words and unique prefixes that
    'will be generated from the dictionary file. This is a max number and
    'the final hashtable will not have that many.
    Dim HashTableOfPrefixesAndWords As New Hashtable(792773)

    'Stores words that are found.
    Dim FoundWords As New Generic.List(Of String)

    'Just to validate what the user enters in the grid.
    Dim ErrorFoundWithSubmittedLetters As Boolean = False

    Public Sub BuildAndTestPathsAndFindWords(ByVal ThisPath As String)
        'Word is the word correlating to the ThisPath parameter.
        'This path would be a series of letters from a to p.
        Dim Word As String = ""

        'The path is iterated through and a word based on the actual
        'letters in the Boggle grid is assembled.
        For i As Integer = 0 To ThisPath.Length - 1
            Word += Me.BoggleLetters(ThisPath.Substring(i, 1))
        Next

        'If my hashtable of word prefixes and words doesn't contain this Word
        'Then this isn't a word and any further extension of ThisPath will not
        'yield any words either. So exit sub to terminate exploring this path.
        If Not HashTableOfPrefixesAndWords.ContainsKey(Word) Then Exit Sub

        'The value of my hashtable is a boolean representing if the key if a word (true) or
        'just a prefix (false). If true and at least 3 letters long then yay! word found.
        If HashTableOfPrefixesAndWords(Word) AndAlso Word.Length > 2 Then Me.FoundWords.Add(Word)

        'If my List of Paths doesn't contain ThisPath then add it.
        'Remember only valid paths will make it this far. Paths not found
        'in the HashTableOfPrefixesAndWords cause this sub to exit above.
        If Not Paths.Contains(ThisPath) Then Paths.Add(ThisPath)

        'Examine the last letter of ThisPath. We are looking to extend the path
        'to our neighboring letters if any are still available.
        LastPositionOfPath = ThisPath.Substring(ThisPath.Length - 1, 1)

        'Loop through my list of neighboring letters (representing grid points).
        For Each Neighbor As String In Me.NeigborsOf(LastPositionOfPath).ToCharArray()
            'If I find a neighboring grid point that I haven't already used
            'in ThisPath then extend ThisPath and feed the new path into
            'this recursive function. (see recursive.)
            If Not ThisPath.Contains(Neighbor) Then Me.BuildAndTestPathsAndFindWords(ThisPath & Neighbor)
        Next
    End Sub

    Protected Sub ButtonBoggle_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles ButtonBoggle.Click

        'User has entered the 16 letters and clicked the go button.

        'Set up my Generic.Dictionary of grid points, I'm using letters a to p -
        'not an x,y grid system.  The values are neighboring points.
        NeigborsOf.Add("a", "bfe")
        NeigborsOf.Add("b", "cgfea")
        NeigborsOf.Add("c", "dhgfb")
        NeigborsOf.Add("d", "hgc")
        NeigborsOf.Add("e", "abfji")
        NeigborsOf.Add("f", "abcgkjie")
        NeigborsOf.Add("g", "bcdhlkjf")
        NeigborsOf.Add("h", "cdlkg")
        NeigborsOf.Add("i", "efjnm")
        NeigborsOf.Add("j", "efgkonmi")
        NeigborsOf.Add("k", "fghlponj")
        NeigborsOf.Add("l", "ghpok")
        NeigborsOf.Add("m", "ijn")
        NeigborsOf.Add("n", "ijkom")
        NeigborsOf.Add("o", "jklpn")
        NeigborsOf.Add("p", "klo")

        'Retrieve letters the user entered.
        BoggleLetters.Add("a", Me.TextBox1.Text.ToLower.Trim())
        BoggleLetters.Add("b", Me.TextBox2.Text.ToLower.Trim())
        BoggleLetters.Add("c", Me.TextBox3.Text.ToLower.Trim())
        BoggleLetters.Add("d", Me.TextBox4.Text.ToLower.Trim())
        BoggleLetters.Add("e", Me.TextBox5.Text.ToLower.Trim())
        BoggleLetters.Add("f", Me.TextBox6.Text.ToLower.Trim())
        BoggleLetters.Add("g", Me.TextBox7.Text.ToLower.Trim())
        BoggleLetters.Add("h", Me.TextBox8.Text.ToLower.Trim())
        BoggleLetters.Add("i", Me.TextBox9.Text.ToLower.Trim())
        BoggleLetters.Add("j", Me.TextBox10.Text.ToLower.Trim())
        BoggleLetters.Add("k", Me.TextBox11.Text.ToLower.Trim())
        BoggleLetters.Add("l", Me.TextBox12.Text.ToLower.Trim())
        BoggleLetters.Add("m", Me.TextBox13.Text.ToLower.Trim())
        BoggleLetters.Add("n", Me.TextBox14.Text.ToLower.Trim())
        BoggleLetters.Add("o", Me.TextBox15.Text.ToLower.Trim())
        BoggleLetters.Add("p", Me.TextBox16.Text.ToLower.Trim())

        'Validate user entered something with a length of 1 for all 16 textboxes.
        For Each S As String In BoggleLetters.Keys
            If BoggleLetters(S).Length <> 1 Then
                ErrorFoundWithSubmittedLetters = True
                Exit For
            End If
        Next

        'If input is not valid then...
        If ErrorFoundWithSubmittedLetters Then
            'Present error message.
        Else
            'Else assume we have 16 letters to work with and start finding words.
            Dim SB As New StringBuilder

            Dim Time As String = String.Format("{0}:{1}:{2}:{3}", Date.Now.Hour.ToString(), Date.Now.Minute.ToString(), Date.Now.Second.ToString(), Date.Now.Millisecond.ToString())

            Dim NumOfLetters As Integer = 0
            Dim Word As String = ""
            Dim TempWord As String = ""
            Dim Letter As String = ""
            Dim fr As StreamReader = Nothing
            fr = New System.IO.StreamReader(HttpContext.Current.Request.MapPath("~/boggle/dic.txt"))

            'First fill my hashtable with word prefixes and words.
            'HashTable(PrefixOrWordString, BooleanTrueIfWordFalseIfPrefix)
            While fr.Peek <> -1
                Word = fr.ReadLine.Trim()
                TempWord = ""
                For i As Integer = 0 To Word.Length - 1
                    Letter = Word.Substring(i, 1)
                    'This optimization helped quite a bit. Words in the dictionary that begin
                    'with letters that the user did not enter in the grid shouldn't go in my hashtable.
                    '
                    'I realize most of the solutions went with a Trie. I'd never heard of that before,
                    'which is one of the neat things about SO, seeing how others approach challenges
                    'and learning some best practices.
                    '
                    'However, I didn't code a Trie in my solution. I just have a hashtable with 
                    'all words in the dicitonary file and all possible prefixes for those words.
                    'A Trie might be faster but I'm not coding it now. I'm getting good times with this.
                    If i = 0 AndAlso Not BoggleLetters.ContainsValue(Letter) Then Continue While
                    TempWord += Letter
                    If Not HashTableOfPrefixesAndWords.ContainsKey(TempWord) Then
                        HashTableOfPrefixesAndWords.Add(TempWord, TempWord = Word)
                    End If
                Next
            End While

            SB.Append("Number of Word Prefixes and Words in Hashtable: " & HashTableOfPrefixesAndWords.Count.ToString())
            SB.Append("<br />")

            SB.Append("Loading Dictionary: " & Time & " - " & String.Format("{0}:{1}:{2}:{3}", Date.Now.Hour.ToString(), Date.Now.Minute.ToString(), Date.Now.Second.ToString(), Date.Now.Millisecond.ToString()))
            SB.Append("<br />")

            Time = String.Format("{0}:{1}:{2}:{3}", Date.Now.Hour.ToString(), Date.Now.Minute.ToString(), Date.Now.Second.ToString(), Date.Now.Millisecond.ToString())

            'This starts a path at each point on the grid an builds a path until 
            'the string of letters correlating to the path is not found in the hashtable
            'of word prefixes and words.
            Me.BuildAndTestPathsAndFindWords("a")
            Me.BuildAndTestPathsAndFindWords("b")
            Me.BuildAndTestPathsAndFindWords("c")
            Me.BuildAndTestPathsAndFindWords("d")
            Me.BuildAndTestPathsAndFindWords("e")
            Me.BuildAndTestPathsAndFindWords("f")
            Me.BuildAndTestPathsAndFindWords("g")
            Me.BuildAndTestPathsAndFindWords("h")
            Me.BuildAndTestPathsAndFindWords("i")
            Me.BuildAndTestPathsAndFindWords("j")
            Me.BuildAndTestPathsAndFindWords("k")
            Me.BuildAndTestPathsAndFindWords("l")
            Me.BuildAndTestPathsAndFindWords("m")
            Me.BuildAndTestPathsAndFindWords("n")
            Me.BuildAndTestPathsAndFindWords("o")
            Me.BuildAndTestPathsAndFindWords("p")

            SB.Append("Finding Words: " & Time & " - " & String.Format("{0}:{1}:{2}:{3}", Date.Now.Hour.ToString(), Date.Now.Minute.ToString(), Date.Now.Second.ToString(), Date.Now.Millisecond.ToString()))
            SB.Append("<br />")

            SB.Append("Num of words found: " & FoundWords.Count.ToString())
            SB.Append("<br />")
            SB.Append("<br />")

            FoundWords.Sort()
            SB.Append(String.Join("<br />", FoundWords.ToArray()))

            'Output results.
            Me.LiteralBoggleResults.Text = SB.ToString()
            Me.PanelBoggleResults.Visible = True

        End If

    End Sub

End Class

Non appena ho visto la dichiarazione del problema, ho pensato "Trie". Ma visto che molti altri manifesti fatto uso di tale approccio, ho cercato un altro approccio solo di essere diversi. Ahimè, l'approccio Trie si comporta meglio. Ho eseguito la soluzione Perl di Kent sulla mia macchina e ci sono voluti 0.31 secondi per eseguire, dopo adattandolo a usare il mio file di dizionario. La mia propria implementazione perl richiesto 0.54 secondi per l'esecuzione.

Questo è stato il mio approccio:

  1. Crea un hash di transizione per modellare le transizioni di legge.

  2. scorrere tutti 16 ^ 3 possibili tre combinazioni di lettere.

    • Nel ciclo, escludere le transizioni illegali e ripetere le visite al stessa piazza. Formare tutti i legali sequenze 3 lettere e memorizzarli in un hash.
  3. Poi un ciclo tra tutte le parole nel dizionario.

    • Escludi parole che sono troppo lunghi o corti
    • Fare scorrere a 3 lettere finestra su ogni parola e vedere se è tra le 3 lettere combo dal punto 2. Escludere parole che non riescono. Questo elimina la maggior parte dei non-match.
    • Se non ancora eliminato, utilizzare un algoritmo ricorsivo per vedere se la parola può essere formata da rendere i percorsi attraverso il puzzle. (Questa parte è lento, ma ha chiesto di rado.)
  4. Stampare le parole che ho trovato.

    Ho provato 3 lettere e 4 lettere sequenze, ma le sequenze di 4 lettere rallentato il programma di basso.

Nel mio codice, io uso / usr / share / dict / words per il mio dizionario. Di serie viene fornito in molti sistemi Unix e MAC OS X. È possibile utilizzare un altro file se si desidera. Per rompere un puzzle diverso, basta cambiare il @puzzle variabile. Questo sarebbe facile da adattare per le matrici più grandi. Si sarebbe solo bisogno di cambiare l'hash% transizioni e% legalTransitions hash.

La forza di questa soluzione è che il codice è breve, e le strutture di dati semplici.

Ecco il codice Perl (che utilizza troppe variabili globali, lo so):

#!/usr/bin/perl
use Time::HiRes  qw{ time };

sub readFile($);
sub findAllPrefixes($);
sub isWordTraceable($);
sub findWordsInPuzzle(@);

my $startTime = time;

# Puzzle to solve

my @puzzle = ( 
    F, X, I, E,
    A, M, L, O,
    E, W, B, X,
    A, S, T, U
);

my $minimumWordLength = 3;
my $maximumPrefixLength = 3; # I tried four and it slowed down.

# Slurp the word list.
my $wordlistFile = "/usr/share/dict/words";

my @words = split(/\n/, uc(readFile($wordlistFile)));
print "Words loaded from word list: " . scalar @words . "\n";

print "Word file load time: " . (time - $startTime) . "\n";
my $postLoad = time;

# Define the legal transitions from one letter position to another. 
# Positions are numbered 0-15.
#     0  1  2  3
#     4  5  6  7
#     8  9 10 11
#    12 13 14 15
my %transitions = ( 
   -1 => [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15],
    0 => [1,4,5], 
    1 => [0,2,4,5,6],
    2 => [1,3,5,6,7],
    3 => [2,6,7],
    4 => [0,1,5,8,9],
    5 => [0,1,2,4,6,8,9,10],
    6 => [1,2,3,5,7,9,10,11],
    7 => [2,3,6,10,11],
    8 => [4,5,9,12,13],
    9 => [4,5,6,8,10,12,13,14],
    10 => [5,6,7,9,11,13,14,15],
    11 => [6,7,10,14,15],
    12 => [8,9,13],
    13 => [8,9,10,12,14],
    14 => [9,10,11,13,15],
    15 => [10,11,14]
);

# Convert the transition matrix into a hash for easy access.
my %legalTransitions = ();
foreach my $start (keys %transitions) {
    my $legalRef = $transitions{$start};
    foreach my $stop (@$legalRef) {
        my $index = ($start + 1) * (scalar @puzzle) + ($stop + 1);
        $legalTransitions{$index} = 1;
    }
}

my %prefixesInPuzzle = findAllPrefixes($maximumPrefixLength);

print "Find prefixes time: " . (time - $postLoad) . "\n";
my $postPrefix = time;

my @wordsFoundInPuzzle = findWordsInPuzzle(@words);

print "Find words in puzzle time: " . (time - $postPrefix) . "\n";

print "Unique prefixes found: " . (scalar keys %prefixesInPuzzle) . "\n";
print "Words found (" . (scalar @wordsFoundInPuzzle) . ") :\n    " . join("\n    ", @wordsFoundInPuzzle) . "\n";

print "Total Elapsed time: " . (time - $startTime) . "\n";

###########################################

sub readFile($) {
    my ($filename) = @_;
    my $contents;
    if (-e $filename) {
        # This is magic: it opens and reads a file into a scalar in one line of code. 
        # See http://www.perl.com/pub/a/2003/11/21/slurp.html
        $contents = do { local( @ARGV, $/ ) = $filename ; <> } ; 
    }
    else {
        $contents = '';
    }
    return $contents;
}

# Is it legal to move from the first position to the second? They must be adjacent.
sub isLegalTransition($$) {
    my ($pos1,$pos2) = @_;
    my $index = ($pos1 + 1) * (scalar @puzzle) + ($pos2 + 1);
    return $legalTransitions{$index};
}

# Find all prefixes where $minimumWordLength <= length <= $maxPrefixLength
#
#   $maxPrefixLength ... Maximum length of prefix we will store. Three gives best performance. 
sub findAllPrefixes($) {
    my ($maxPrefixLength) = @_;
    my %prefixes = ();
    my $puzzleSize = scalar @puzzle;

    # Every possible N-letter combination of the letters in the puzzle 
    # can be represented as an integer, though many of those combinations
    # involve illegal transitions, duplicated letters, etc.
    # Iterate through all those possibilities and eliminate the illegal ones.
    my $maxIndex = $puzzleSize ** $maxPrefixLength;

    for (my $i = 0; $i < $maxIndex; $i++) {
        my @path;
        my $remainder = $i;
        my $prevPosition = -1;
        my $prefix = '';
        my %usedPositions = ();
        for (my $prefixLength = 1; $prefixLength <= $maxPrefixLength; $prefixLength++) {
            my $position = $remainder % $puzzleSize;

            # Is this a valid step?
            #  a. Is the transition legal (to an adjacent square)?
            if (! isLegalTransition($prevPosition, $position)) {
                last;
            }

            #  b. Have we repeated a square?
            if ($usedPositions{$position}) {
                last;
            }
            else {
                $usedPositions{$position} = 1;
            }

            # Record this prefix if length >= $minimumWordLength.
            $prefix .= $puzzle[$position];
            if ($prefixLength >= $minimumWordLength) {
                $prefixes{$prefix} = 1;
            }

            push @path, $position;
            $remainder -= $position;
            $remainder /= $puzzleSize;
            $prevPosition = $position;
        } # end inner for
    } # end outer for
    return %prefixes;
}

# Loop through all words in dictionary, looking for ones that are in the puzzle.
sub findWordsInPuzzle(@) {
    my @allWords = @_;
    my @wordsFound = ();
    my $puzzleSize = scalar @puzzle;
WORD: foreach my $word (@allWords) {
        my $wordLength = length($word);
        if ($wordLength > $puzzleSize || $wordLength < $minimumWordLength) {
            # Reject word as too short or too long.
        }
        elsif ($wordLength <= $maximumPrefixLength ) {
            # Word should be in the prefix hash.
            if ($prefixesInPuzzle{$word}) {
                push @wordsFound, $word;
            }
        }
        else {
            # Scan through the word using a window of length $maximumPrefixLength, looking for any strings not in our prefix list.
            # If any are found that are not in the list, this word is not possible.
            # If no non-matches are found, we have more work to do.
            my $limit = $wordLength - $maximumPrefixLength + 1;
            for (my $startIndex = 0; $startIndex < $limit; $startIndex ++) {
                if (! $prefixesInPuzzle{substr($word, $startIndex, $maximumPrefixLength)}) {
                    next WORD;
                }
            }
            if (isWordTraceable($word)) {
                # Additional test necessary: see if we can form this word by following legal transitions
                push @wordsFound, $word;
            }
        }

    }
    return @wordsFound;
}

# Is it possible to trace out the word using only legal transitions?
sub isWordTraceable($) {
    my $word = shift;
    return traverse([split(//, $word)], [-1]); # Start at special square -1, which may transition to any square in the puzzle.
}

# Recursively look for a path through the puzzle that matches the word.
sub traverse($$) {
    my ($lettersRef, $pathRef) = @_;
    my $index = scalar @$pathRef - 1;
    my $position = $pathRef->[$index];
    my $letter = $lettersRef->[$index];
    my $branchesRef =  $transitions{$position};
BRANCH: foreach my $branch (@$branchesRef) {
            if ($puzzle[$branch] eq $letter) {
                # Have we used this position yet?
                foreach my $usedBranch (@$pathRef) {
                    if ($usedBranch == $branch) {
                        next BRANCH;
                    }
                }
                if (scalar @$lettersRef == $index + 1) {
                    return 1; # End of word and success.
                }
                push @$pathRef, $branch;
                if (traverse($lettersRef, $pathRef)) {
                    return 1; # Recursive success.
                }
                else {
                    pop @$pathRef;
                }
            }
        }
    return 0; # No path found. Failed.
}

So di essere super tardi, ma ho fatto uno di questi qualche tempo fa nel PHP - solo per divertimento anche ...

http://www.lostsockdesign.com.au/ sandbox / Boggle / index.php? lettere = fxieamloewbxastu Trovato 75 parole (133 pts) a 0.90108 secondi

F.........X..I..............E............... A......................................M..............................L............................O............................... E....................W............................B..........................X A..................S..................................................T.................U....

dà qualche indicazione di ciò che il programma è in realtà facendo - ogni lettera è dove inizia guardando attraverso i modelli mentre ogni '' mostra un percorso che ha cercato di prendere. Più '.' Ci sono i più Ha cercato.

Fatemi sapere se si desidera che il codice ... è un orribile mix di PHP e HTML che non è mai stato destinato a vedere la luce del giorno, quindi non oso postare qui: P

ho trascorso 3 mesi a lavorare su una soluzione al 10 miglior punto denso 5x5 problema tavole Boggle.

Il problema è ora risolto e rifinita con una completa informativa su 5 pagine web. Si prega di contattare me con le domande.

L'algoritmo di analisi scheda utilizza uno stack esplicito alla pseudo-ricorsivamente attraversare le piazze di bordo attraverso un Directed aciclico Word Grafico con informazioni dirette bambino, e un meccanismo di monitoraggio di data e ora. Questo potrebbe benissimo essere struttura di dati lessico più avanzate al mondo.

Lo schema restituisce circa 10.000 ottime tavole al secondo su un quad core. (9500+ punti)

pagina Web principale:

DeepSearch.c - http://www.pathcom.com/~vadco/deep. html

Pagine Web Component:

Ottimale Scoreboard - http://www.pathcom.com/~vadco/binary.html

Avanzate Lexicon Struttura - http://www.pathcom.com/~vadco/adtdawg. html

algoritmo di analisi Board - http://www.pathcom.com/~vadco/guns. html

Elaborazione batch in parallelo - http://www.pathcom.com/~vadco/parallel. html

- Questo corpo completa del lavoro interesserà solo una persona che vuole solo il meglio.

Il tuo algoritmo di ricerca diminuire costantemente l'elenco di parole come la ricerca continua?

Per esempio, nella ricerca sopra ci sono solo 13 le lettere che le tue parole possono iniziare con (in modo efficace riducendo al metà delle lettere iniziali).

Quando si aggiungono più permutazioni lettera sarebbe ulteriormente diminuire i set di parole disponibili diminuendo la ricerca necessaria.

Mi piacerebbe iniziare lì.

avrei dovuto dare più pensato a una soluzione completa, ma come un'ottimizzazione a portata di mano, mi chiedo se forse vale la pena di pre-computing una tabella di frequenze di digrammi e trigrammi (combinazioni a 2 e 3 lettere) in base su tutte le parole dal dizionario, e utilizzare questo per dare priorità alla ricerca. Mi piacerebbe andare con le lettere iniziali di parole. Così, se il dizionario contiene le parole "India", "Acqua", "estremo", e "eccezionale", allora la vostra tabella pre-calcolate potrebbe essere:

'IN': 1
'WA': 1
'EX': 2

Poi la ricerca di questi digrammi nell'ordine di comunanza (prima EX, poi WA / IN)

Per prima cosa, leggere come una delle lingue progettisti C # risolto un problema correlato: http: //blogs.msdn.com/ericlippert/archive/2009/02/04/a-nasality-talisman-for-the-sultana-analyst.aspx .

Come lui, si può iniziare con un dizionario e le parole canonacalize per la creazione di un dizionario da una serie di lettere in ordine alfabetico a un elenco di parole che possono essere scritti da quelle lettere.

In seguito, inizia a creare le parole possibili dal tabellone e cercando prodotti. Ho il sospetto che ti porterà abbastanza lontano, ma ci sono sicuramente più trucchi che potrebbero accelerare le cose.

Suggerisco di fare un albero di lettere sulla base di parole. L'albero sarebbe composto di una lettera struct, in questo modo:

letter: char
isWord: boolean

Poi si costruisce l'albero, con ogni profondità l'aggiunta di una nuova lettera. In altre parole, al primo livello ci sarebbe l'alfabeto; poi da ciascuno di quegli alberi, non ci sarebbe un altro un altro 26 voci, e così via, fino a quando hai spiegato tutte le parole. Aggrapparsi questo albero analizzata, e si metterà a fare tutte le possibili risposte più veloce per guardare in alto.

Con questo analizzato albero, è possibile trovare rapidamente soluzioni. Ecco il pseudo-codice:

BEGIN: 
    For each letter:
        if the struct representing it on the current depth has isWord == true, enter it as an answer.
        Cycle through all its neighbors; if there is a child of the current node corresponding to the letter, recursively call BEGIN on it.

Questo potrebbe essere accelerato con un po 'di programmazione dinamica. Ad esempio, nel campione, i due 'a sono entrambi accanto a un 'E' e 'W', che (dal punto li colpiscono via) sarebbe identica. Non ho abbastanza tempo per precisare davvero fuori il codice per questo, ma penso che si può raccogliere l'idea.

Inoltre, sono sicuro che troverete altre soluzioni se Google per "Boggle risolutore".

Solo per divertimento, ho implementato uno in bash. Non è super veloce, ma ragionevole.

http://dev.xkyle.com/bashboggle/

Hilarious. Ho quasi postato la stessa domanda un paio di giorni fa a causa della stessa partita maledetta! Non l'ho fatto comunque, perché solo cercato su Google per Boggle risolutore pitone e ottenuto tutte le risposte che potrei desiderare.

Mi rendo conto che è giunto il momento di questa domanda e andato, ma dal momento che stavo lavorando su un risolutore di me, e siamo imbattuti in questo mentre googling circa, ho pensato di inserire un riferimento al mio come sembra un po 'diverso da alcune delle altri.

Ho scelto di andare con una matrice piatta per il gioco da tavolo, e fare cacce ricorsive da ogni lettera sul tabellone, attraversando da vicino di valido prossimo valida, estendendo la caccia, se l'attuale elenco di lettere se un prefisso valido un indice. Mentre attraversa la nozione della parola corrente è la lista di indici in pensione, non lettere che compongono una parola. Quando si controlla l'indice, gli indici vengono convertiti in lettere e il controllo di fatto.

L'indice è un dizionario forza bruta che è un po 'come un trie, ma consente per le query Pythonic dell'indice. Se le parole 'gatto' e 'cater' sono nella lista, si otterrà questo nel dizionario:

   d = { 'c': ['cat','cater'],
     'ca': ['cat','cater'],
     'cat': ['cat','cater'],
     'cate': ['cater'],
     'cater': ['cater'],
   }

Quindi, se il current_word è 'ca' si sa che si tratta di un prefisso valido perché 'ca' in d restituisce True (in modo da continuare l'attraversamento di bordo). E se il current_word è 'gatto' poi si sa che si tratta di una parola valida, perché è un prefisso valido e 'cat' in d['cat'] ritorna troppo vero.

Se sentito così permesso per qualche codice leggibile che non sembra troppo lento. Come tutti gli altri la spesa in questo sistema è la lettura / costruire l'indice. Risolvere il consiglio è più o meno rumore.

Il codice è a http://gist.github.com/268079 . Si è volutamente verticale e ingenua con un sacco di controllo validità esplicito perché volevo capire il problema senza crufting in su con un po 'di magia o di oscurità.

ho scritto il mio risolutore in C ++. Ho implementato una struttura ad albero personalizzato. Io non sono sicuro che può essere considerato un trie, ma è simile. Ogni nodo ha 26 rami, 1 per ogni lettera dell'alfabeto. Io percorro i rami del consiglio Boggle in parallelo con i rami di mio dizionario. Se il ramo non esiste nel dizionario, mi fermo a cercare sul tabellone Boggle. A convertire tutte le lettere sul tabellone a int. Così 'A' = 0. Dal momento che è solo array, di ricerca è sempre O (1). Ogni nodo memorizza se si completa una parola e quante parole presenti nei suoi figli. L'albero viene potata come le parole sono trovati a ridurre più volte cercando le stesse parole. Credo che la potatura è anche O (1).

CPU: Pentium SU2700 da 1.3GHz
RAM: 3gb

Carichi dizionario di 178,590 parole <1 secondo.
Risolve 100x100 Boggle (boggle.txt) in 4 secondi. ~ 44.000 parole trovate.
Risolvere un 4x4 Boggle è troppo veloce per fornire un punto di riferimento significativo. :)

veloce Boggle Risolutore GitHub Repo

Dato un bordo Boggle con N righe e M colonne, supponiamo il seguente:

  • N * M è sostanzialmente maggiore del numero di parole possibili
  • N * M è sostanzialmente maggiore della parola più lunga possibile

Sotto queste ipotesi, la complessità di questa soluzione è O (N * M).

Credo che il confronto tempi di esecuzione per questo un esempio pensione in molti modi, ma non coglie il punto, per ragioni di completezza, questa soluzione completa in <0.2s sul mio MacBook Pro moderna.

Questa soluzione troverà tutti i percorsi possibili per ogni parola nel corpus.

#!/usr/bin/env ruby
# Example usage: ./boggle-solver --board "fxie amlo ewbx astu"

autoload :Matrix, 'matrix'
autoload :OptionParser, 'optparse'

DEFAULT_CORPUS_PATH = '/usr/share/dict/words'.freeze

# Functions

def filter_corpus(matrix, corpus, min_word_length)
  board_char_counts = Hash.new(0)
  matrix.each { |c| board_char_counts[c] += 1 }

  max_word_length = matrix.row_count * matrix.column_count
  boggleable_regex = /^[#{board_char_counts.keys.reduce(:+)}]{#{min_word_length},#{max_word_length}}$/
  corpus.select{ |w| w.match boggleable_regex }.select do |w|
    word_char_counts = Hash.new(0)
    w.each_char { |c| word_char_counts[c] += 1 }
    word_char_counts.all? { |c, count| board_char_counts[c] >= count }
  end
end

def neighbors(point, matrix)
  i, j = point
  ([i-1, 0].max .. [i+1, matrix.row_count-1].min).inject([]) do |r, new_i|
    ([j-1, 0].max .. [j+1, matrix.column_count-1].min).inject(r) do |r, new_j|
      neighbor = [new_i, new_j]
      neighbor.eql?(point) ? r : r << neighbor
    end
  end
end

def expand_path(path, word, matrix)
  return [path] if path.length == word.length

  next_char = word[path.length]
  viable_neighbors = neighbors(path[-1], matrix).select do |point|
    !path.include?(point) && matrix.element(*point).eql?(next_char)
  end

  viable_neighbors.inject([]) do |result, point|
    result + expand_path(path.dup << point, word, matrix)
  end
end

def find_paths(word, matrix)
  result = []
  matrix.each_with_index do |c, i, j|
    result += expand_path([[i, j]], word, matrix) if c.eql?(word[0])
  end
  result
end

def solve(matrix, corpus, min_word_length: 3)
  boggleable_corpus = filter_corpus(matrix, corpus, min_word_length)
  boggleable_corpus.inject({}) do |result, w|
    paths = find_paths(w, matrix)
    result[w] = paths unless paths.empty?
    result
  end
end

# Script

options = { corpus_path: DEFAULT_CORPUS_PATH }
option_parser = OptionParser.new do |opts|
  opts.banner = 'Usage: boggle-solver --board <value> [--corpus <value>]'

  opts.on('--board BOARD', String, 'The board (e.g. "fxi aml ewb ast")') do |b|
    options[:board] = b
  end

  opts.on('--corpus CORPUS_PATH', String, 'Corpus file path') do |c|
    options[:corpus_path] = c
  end

  opts.on_tail('-h', '--help', 'Shows usage') do
    STDOUT.puts opts
    exit
  end
end
option_parser.parse!

unless options[:board]
  STDERR.puts option_parser
  exit false
end

unless File.file? options[:corpus_path]
  STDERR.puts "No corpus exists - #{options[:corpus_path]}"
  exit false
end

rows = options[:board].downcase.scan(/\S+/).map{ |row| row.scan(/./) }

raw_corpus = File.readlines(options[:corpus_path])
corpus = raw_corpus.map{ |w| w.downcase.rstrip }.uniq.sort

solution = solve(Matrix.rows(rows), corpus)
solution.each_pair do |w, paths|
  STDOUT.puts w
  paths.each do |path|
    STDOUT.puts "\t" + path.map{ |point| point.inspect }.join(', ')
  end
end
STDOUT.puts "TOTAL: #{solution.count}"

Questa soluzione dà anche la direzione per la ricerca nel data scheda

Algo:

1. Uses trie to save all the word in the english to fasten the search
2. The uses DFS to search the words in Boggle

Output:

Found "pic" directions from (4,0)(p) go  → →
Found "pick" directions from (4,0)(p) go  → → ↑
Found "pickman" directions from (4,0)(p) go  → → ↑ ↑ ↖ ↑
Found "picket" directions from (4,0)(p) go  → → ↑ ↗ ↖
Found "picked" directions from (4,0)(p) go  → → ↑ ↗ ↘
Found "pickle" directions from (4,0)(p) go  → → ↑ ↘ →

Codice:

from collections import defaultdict
from nltk.corpus import words
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize

english_words = words.words()

# If you wan to remove stop words
# stop_words = set(stopwords.words('english'))
# english_words = [w for w in english_words if w not in stop_words]

boggle = [
    ['c', 'n', 't', 's', 's'],
    ['d', 'a', 't', 'i', 'n'],
    ['o', 'o', 'm', 'e', 'l'],
    ['s', 'i', 'k', 'n', 'd'],
    ['p', 'i', 'c', 'l', 'e']
]

# Instead of X and Y co-ordinates
# better to use Row and column
lenc = len(boggle[0])
lenr = len(boggle)

# Initialize trie datastructure
trie_node = {'valid': False, 'next': {}}

# lets get the delta to find all the nighbors
neighbors_delta = [
    (-1,-1, "↖"),
    (-1, 0, "↑"),
    (-1, 1, "↗"),
    (0, -1, "←"),
    (0,  1, "→"),
    (1, -1, "↙"),
    (1,  0, "↓"),
    (1,  1, "↘"),
]


def gen_trie(word, node):
    """udpates the trie datastructure using the given word"""
    if not word:
        return

    if word[0] not in node:
        node[word[0]] = {'valid': len(word) == 1, 'next': {}}

    # recursively build trie
    gen_trie(word[1:], node[word[0]])


def build_trie(words, trie):
    """Builds trie data structure from the list of words given"""
    for word in words:
        gen_trie(word, trie)
    return trie


def get_neighbors(r, c):
    """Returns the neighbors for a given co-ordinates"""
    n = []
    for neigh in neighbors_delta:
        new_r = r + neigh[0]
        new_c = c + neigh[1]

        if (new_r >= lenr) or (new_c >= lenc) or (new_r < 0) or (new_c < 0):
            continue
        n.append((new_r, new_c, neigh[2]))
    return n


def dfs(r, c, visited, trie, now_word, direction):
    """Scan the graph using DFS"""
    if (r, c) in visited:
        return

    letter = boggle[r][c]
    visited.append((r, c))

    if letter in trie:
        now_word += letter

        if trie[letter]['valid']:
            print('Found "{}" {}'.format(now_word, direction))

        neighbors = get_neighbors(r, c)
        for n in neighbors:
            dfs(n[0], n[1], visited[::], trie[letter], now_word, direction + " " + n[2])


def main(trie_node):
    """Initiate the search for words in boggle"""
    trie_node = build_trie(english_words, trie_node)

    # print the board
    print("Given board")
    for i in range(lenr):print (boggle[i])
    print ('\n')

    for r in range(lenr):
        for c in range(lenc):
            letter = boggle[r][c]
            dfs(r, c, [], trie_node, '', 'directions from ({},{})({}) go '.format(r, c, letter))


if __name__ == '__main__':
    main(trie_node)

implementato una soluzione in OCaml . Si pre-compila un dizionario come trie, e utilizza frequenze sequenza due lettere per eliminare bordi che potrebbero non apparire in una parola per accelerare ulteriormente elaborazione.

Si risolve la vostra tavola esempio 0.35ms (con l'aggiunta di 6 ms di tempo di start-up, che è in gran parte legato al caricamento del trie in memoria).

Le soluzioni trovate:

["swami"; "emile"; "limbs"; "limbo"; "limes"; "amble"; "tubs"; "stub";
 "swam"; "semi"; "seam"; "awes"; "buts"; "bole"; "boil"; "west"; "east";
 "emil"; "lobs"; "limb"; "lime"; "lima"; "mesa"; "mews"; "mewl"; "maws";
 "milo"; "mile"; "awes"; "amie"; "axle"; "elma"; "fame"; "ubs"; "tux"; "tub";
 "twa"; "twa"; "stu"; "saw"; "sea"; "sew"; "sea"; "awe"; "awl"; "but"; "btu";
 "box"; "bmw"; "was"; "wax"; "oil"; "lox"; "lob"; "leo"; "lei"; "lie"; "mes";
 "mew"; "mae"; "maw"; "max"; "mil"; "mix"; "awe"; "awl"; "elm"; "eli"; "fax"]

Una soluzione Node.JS JavaScript. Calcola tutte le 100 parole uniche in meno di un secondo, che include la lettura di file del dizionario (MBA 2012).

Output:
[ "FAM", "TUX", "TUB", "FAE", "ELI", "ELM", "ELB", "TWA", "TWA", "SAW", "AMI", "SWA"," SWA", "AME", "mare", "SEW", "AES", "AWL", "AWE", "mare", "AWA", "MIX", "mil", "AST", "ASE" , "MAX", "MAE", "MAW", "MEW", "AWE", "MES", "AWL", "LIE", "LIM", "AWA", "AES", "MA"," BLO", "era", "WAE", "WEA", "lei", "LEO", "LOB", "LOX", "WEM", "OIL", "OLM", "WEA", "WAE" , "CERA", "WAF", "MILO", "Oriente", "WAME", "TWAS", "TWAE", "Emil", "WEAM", "OIME", "AXIL", "Occidente"," TWAE", "ARTI", "WASE", "WAST", "Bleo", "stub", "bollire", "BOLE", "LIME", "SAWT", "LIMA", "Mesa", "miagolare" , "ASSE", "Fame", "ASEM", "miglio", "AMIL", "Seax", "SEAM", "SEMI", "SWAM", "AMBO", "AMLI", "assile"," AMBLE", "Swami", "AWEST", "AWEST", "Limax", "Limes", "Limbu", "limbo", "eMBox", "semble", "EMBOLE", "Wamble", "FAMBLE" ]

Codice:

var fs = require('fs')

var Node = function(value, row, col) {
    this.value = value
    this.row = row
    this.col = col
}

var Path = function() {
    this.nodes = []
}

Path.prototype.push = function(node) {
    this.nodes.push(node)
    return this
}

Path.prototype.contains = function(node) {
    for (var i = 0, ii = this.nodes.length; i < ii; i++) {
        if (this.nodes[i] === node) {
            return true
        }
    }

    return false
}

Path.prototype.clone = function() {
    var path = new Path()
    path.nodes = this.nodes.slice(0)
    return path
}

Path.prototype.to_word = function() {
    var word = ''

    for (var i = 0, ii = this.nodes.length; i < ii; ++i) {
        word += this.nodes[i].value
    }

    return word
}

var Board = function(nodes, dict) {
    // Expects n x m array.
    this.nodes = nodes
    this.words = []
    this.row_count = nodes.length
    this.col_count = nodes[0].length
    this.dict = dict
}

Board.from_raw = function(board, dict) {
    var ROW_COUNT = board.length
      , COL_COUNT = board[0].length

    var nodes = []

    // Replace board with Nodes
    for (var i = 0, ii = ROW_COUNT; i < ii; ++i) {
        nodes.push([])
        for (var j = 0, jj = COL_COUNT; j < jj; ++j) {
            nodes[i].push(new Node(board[i][j], i, j))
        }
    }

    return new Board(nodes, dict)
}

Board.prototype.toString = function() {
    return JSON.stringify(this.nodes)
}

Board.prototype.update_potential_words = function(dict) {
    for (var i = 0, ii = this.row_count; i < ii; ++i) {
        for (var j = 0, jj = this.col_count; j < jj; ++j) {
            var node = this.nodes[i][j]
              , path = new Path()

            path.push(node)

            this.dfs_search(path)
        }
    }
}

Board.prototype.on_board = function(row, col) {
    return 0 <= row && row < this.row_count && 0 <= col && col < this.col_count
}

Board.prototype.get_unsearched_neighbours = function(path) {
    var last_node = path.nodes[path.nodes.length - 1]

    var offsets = [
        [-1, -1], [-1,  0], [-1, +1]
      , [ 0, -1],           [ 0, +1]
      , [+1, -1], [+1,  0], [+1, +1]
    ]

    var neighbours = []

    for (var i = 0, ii = offsets.length; i < ii; ++i) {
        var offset = offsets[i]
        if (this.on_board(last_node.row + offset[0], last_node.col + offset[1])) {

            var potential_node = this.nodes[last_node.row + offset[0]][last_node.col + offset[1]]
            if (!path.contains(potential_node)) {
                // Create a new path if on board and we haven't visited this node yet.
                neighbours.push(potential_node)
            }
        }
    }

    return neighbours
}

Board.prototype.dfs_search = function(path) {
    var path_word = path.to_word()

    if (this.dict.contains_exact(path_word) && path_word.length >= 3) {
        this.words.push(path_word)
    }

    var neighbours = this.get_unsearched_neighbours(path)

    for (var i = 0, ii = neighbours.length; i < ii; ++i) {
        var neighbour = neighbours[i]
        var new_path = path.clone()
        new_path.push(neighbour)

        if (this.dict.contains_prefix(new_path.to_word())) {
            this.dfs_search(new_path)
        }
    }
}

var Dict = function() {
    this.dict_array = []

    var dict_data = fs.readFileSync('./web2', 'utf8')
    var dict_array = dict_data.split('\n')

    for (var i = 0, ii = dict_array.length; i < ii; ++i) {
        dict_array[i] = dict_array[i].toUpperCase()
    }

    this.dict_array = dict_array.sort()
}

Dict.prototype.contains_prefix = function(prefix) {
    // Binary search
    return this.search_prefix(prefix, 0, this.dict_array.length)
}

Dict.prototype.contains_exact = function(exact) {
    // Binary search
    return this.search_exact(exact, 0, this.dict_array.length)
}

Dict.prototype.search_prefix = function(prefix, start, end) {
    if (start >= end) {
        // If no more place to search, return no matter what.
        return this.dict_array[start].indexOf(prefix) > -1
    }

    var middle = Math.floor((start + end)/2)

    if (this.dict_array[middle].indexOf(prefix) > -1) {
        // If we prefix exists, return true.
        return true
    } else {
        // Recurse
        if (prefix <= this.dict_array[middle]) {
            return this.search_prefix(prefix, start, middle - 1)
        } else {
            return this.search_prefix(prefix, middle + 1, end)
        }
    }
}

Dict.prototype.search_exact = function(exact, start, end) {
    if (start >= end) {
        // If no more place to search, return no matter what.
        return this.dict_array[start] === exact
    }

    var middle = Math.floor((start + end)/2)

    if (this.dict_array[middle] === exact) {
        // If we prefix exists, return true.
        return true
    } else {
        // Recurse
        if (exact <= this.dict_array[middle]) {
            return this.search_exact(exact, start, middle - 1)
        } else {
            return this.search_exact(exact, middle + 1, end)
        }
    }
}

var board = [
    ['F', 'X', 'I', 'E']
  , ['A', 'M', 'L', 'O']
  , ['E', 'W', 'B', 'X']
  , ['A', 'S', 'T', 'U']
]

var dict = new Dict()

var b = Board.from_raw(board, dict)
b.update_potential_words()
console.log(JSON.stringify(b.words.sort(function(a, b) {
    return a.length - b.length
})))

Così ho voluto aggiungere un altro modo PHP per risolvere questo, dal momento che tutti amano PHP. C'è un po 'di refactoring vorrei fare, come l'utilizzo di un match regexpression contro il file del dizionario, ma in questo momento io sono solo caricare l'intero file in un dizionario listaParole.

Ho fatto questo utilizzando un'idea lista collegata. Ogni nodo ha un valore di carattere, un valore di posizione, e una prossima puntatore.

Il valore posizione è quanto ho scoperto se sono collegati due nodi.

1     2     3     4
11    12    13    14
21    22    23    24
31    32    33    34

Quindi, utilizzando quella griglia, so due nodi sono collegati se la posizione del primo nodo è uguale alla seconda posizione nodi +/- 1 per la stessa riga, +/- 9, 10, 11 per la riga sopra e sotto.

Io uso ricorsione per la ricerca principale. Ci vuole una parola fuori il dizionario, trova tutti i possibili punti di partenza, e poi trova ricorsivamente il prossimo collegamento possibile, tenendo presente che non si può andare in un luogo che è già utilizzando (che è il motivo per cui aggiungo $ notInLoc).

In ogni caso, so che ha bisogno di qualche refactoring, e mi piacerebbe sentire i pensieri su come renderlo più pulito, ma produce i risultati corretti in base al file dizionario che sto utilizzando. A seconda del numero di vocali e combinazioni sulla scheda, ci vogliono circa 3 a 6 secondi. So che una volta ho preg_match i risultati del dizionario, che ridurrà in modo significativo.

<?php
    ini_set('xdebug.var_display_max_depth', 20);
    ini_set('xdebug.var_display_max_children', 1024);
    ini_set('xdebug.var_display_max_data', 1024);

    class Node {
        var $loc;

        function __construct($value) {
            $this->value = $value;
            $next = null;
        }
    }

    class Boggle {
        var $root;
        var $locList = array (1, 2, 3, 4, 11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34);
        var $wordList = [];
        var $foundWords = [];

        function __construct($board) {
            // Takes in a board string and creates all the nodes
            $node = new Node($board[0]);
            $node->loc = $this->locList[0];
            $this->root = $node;
            for ($i = 1; $i < strlen($board); $i++) {
                    $node->next = new Node($board[$i]);
                    $node->next->loc = $this->locList[$i];
                    $node = $node->next;
            }
            // Load in a dictionary file
            // Use regexp to elimate all the words that could never appear and load the 
            // rest of the words into wordList
            $handle = fopen("dict.txt", "r");
            if ($handle) {
                while (($line = fgets($handle)) !== false) {
                    // process the line read.
                    $line = trim($line);
                    if (strlen($line) > 2) {
                        $this->wordList[] = trim($line);
                    }
                }
                fclose($handle);
            } else {
                // error opening the file.
                echo "Problem with the file.";
            } 
        }

        function isConnected($node1, $node2) {
        // Determines if 2 nodes are connected on the boggle board

            return (($node1->loc == $node2->loc + 1) || ($node1->loc == $node2->loc - 1) ||
               ($node1->loc == $node2->loc - 9) || ($node1->loc == $node2->loc - 10) || ($node1->loc == $node2->loc - 11) ||
               ($node1->loc == $node2->loc + 9) || ($node1->loc == $node2->loc + 10) || ($node1->loc == $node2->loc + 11)) ? true : false;

        }

        function find($value, $notInLoc = []) {
            // Returns a node with the value that isn't in a location
            $current = $this->root;
            while($current) {
                if ($current->value == $value && !in_array($current->loc, $notInLoc)) {
                    return $current;
                }
                if (isset($current->next)) {
                    $current = $current->next;
                } else {
                    break;
                }
            }
            return false;
        }

        function findAll($value) {
            // Returns an array of nodes with a specific value
            $current = $this->root;
            $foundNodes = [];
            while ($current) {
                if ($current->value == $value) {
                    $foundNodes[] = $current;
                }
                if (isset($current->next)) {
                    $current = $current->next;
                } else {
                    break;
                }
            }
            return (empty($foundNodes)) ? false : $foundNodes;
        }

        function findAllConnectedTo($node, $value, $notInLoc = []) {
            // Returns an array of nodes that are connected to a specific node and 
            // contain a specific value and are not in a certain location
            $nodeList = $this->findAll($value);
            $newList = [];
            if ($nodeList) {
                foreach ($nodeList as $node2) {
                    if (!in_array($node2->loc, $notInLoc) && $this->isConnected($node, $node2)) {
                        $newList[] = $node2;
                    }
                }
            }
            return (empty($newList)) ? false : $newList;
        }



        function inner($word, $list, $i = 0, $notInLoc = []) {
            $i++;
            foreach($list as $node) {
                $notInLoc[] = $node->loc;
                if ($list2 = $this->findAllConnectedTo($node, $word[$i], $notInLoc)) {
                    if ($i == (strlen($word) - 1)) {
                        return true;
                    } else {
                        return $this->inner($word, $list2, $i, $notInLoc);
                    }
                }
            }
            return false;
        }

        function findWord($word) {
            if ($list = $this->findAll($word[0])) {
                return $this->inner($word, $list);
            }
            return false;
        }

        function findAllWords() {
            foreach($this->wordList as $word) {
                if ($this->findWord($word)) {
                    $this->foundWords[] = $word;
                }
            }
        }

        function displayBoard() {
            $current = $this->root;
            for ($i=0; $i < 4; $i++) {
                echo $current->value . " " . $current->next->value . " " . $current->next->next->value . " " . $current->next->next->next->value . "<br />";
                if ($i < 3) {
                    $current = $current->next->next->next->next;
                }
            }
        }

    }

    function randomBoardString() {
        return substr(str_shuffle(str_repeat("abcdefghijklmnopqrstuvwxyz", 16)), 0, 16);
    }

    $myBoggle = new Boggle(randomBoardString());
    $myBoggle->displayBoard();
    $x = microtime(true);
    $myBoggle->findAllWords();
    $y = microtime(true);
    echo ($y-$x);
    var_dump($myBoggle->foundWords);

    ?>

So che sono veramente in ritardo alla festa, ma ho implementato, come un esercizio di codifica, un risolutore boggle in diversi linguaggi di programmazione (C ++, Java, Go, C #, Python, Ruby, JavaScript, Julia, Lua, PHP, Perl) e ho pensato che qualcuno potrebbe essere interessato a quelli, quindi lascio link qui: https://github.com/AmokHuginnsson/boggle-solvers

Ecco la soluzione Usando le parole predefiniti in NLTK toolkit NLTK ha pacchetto nltk.corpus in quanto abbiamo pacchetto chiamato parole e contiene più delle parole 2Lakhs inglese si può semplicemente utilizzare tutto nel vostro programma.

Una volta che la creazione del matrice convertirlo in un array di caratteri ed eseguire questo codice

import nltk
from nltk.corpus import words
from collections import Counter

def possibleWords(input, charSet):
    for word in input:
        dict = Counter(word)
        flag = 1
        for key in dict.keys():
            if key not in charSet:
                flag = 0
        if flag == 1 and len(word)>5: #its depends if you want only length more than 5 use this otherwise remove that one. 
            print(word)


nltk.download('words')
word_list = words.words()
# prints 236736
print(len(word_list))
charSet = ['h', 'e', 'l', 'o', 'n', 'v', 't']
possibleWords(word_list, charSet)

Output:

eleven
eleventh
elevon
entente
entone
ethene
ethenol
evolve
evolvent
hellhole
helvell
hooven
letten
looten
nettle
nonene
nonent
nonlevel
notelet
novelet
novelette
novene
teenet
teethe
teevee
telethon
tellee
tenent
tentlet
theelol
toetoe
tonlet
toothlet
tootle
tottle
vellon
velvet
velveteen
venene
vennel
venthole
voeten
volent
volvelle
volvent
voteen

Spero lo si ottiene.

Ecco la mia implementazione Java: https://github.com/zouzhile/interview/blob/master/src/com/interview/algorithms/tree/BoggleSolver.java

Trie accumulo prese 0 ore, 0 minuti, 1 secondo, 532 millisecondi
Parola searching ha 0 ore, 0 minuti, 0 secondi, 92 millisecondi

eel eeler eely eer eke eker eld eleut elk ell 
elle epee epihippus ere erept err error erupt eurus eye 
eyer eyey hip hipe hiper hippish hipple hippus his hish 
hiss hist hler hsi ihi iphis isis issue issuer ist 
isurus kee keek keeker keel keeler keep keeper keld kele 
kelek kelep kelk kell kelly kelp kelper kep kepi kept 
ker kerel kern keup keuper key kyl kyle lee leek 
leeky leep leer lek leo leper leptus lepus ler leu 
ley lleu lue lull luller lulu lunn lunt lunule luo 
lupe lupis lupulus lupus lur lure lurer lush lushly lust 
lustrous lut lye nul null nun nupe nurture nurturer nut 
oer ore ort ouphish our oust out outpeep outpeer outpipe 
outpull outpush output outre outrun outrush outspell outspue outspurn outspurt 
outstrut outstunt outsulk outturn outusure oyer pee peek peel peele 
peeler peeoy peep peeper peepeye peer pele peleus pell peller 
pelu pep peplus pepper pepperer pepsis per pern pert pertussis 
peru perule perun peul phi pip pipe piper pipi pipistrel 
pipistrelle pipistrellus pipper pish piss pist plup plus plush ply 
plyer psi pst puerer pul pule puler pulk pull puller 
pulley pullus pulp pulper pulu puly pun punt pup puppis 
pur pure puree purely purer purr purre purree purrel purrer 
puru purupuru pus push puss pustule put putt puture ree 
reek reeker reeky reel reeler reeper rel rely reoutput rep 
repel repeller repipe reply repp reps reree rereel rerun reuel 
roe roer roey roue rouelle roun roup rouper roust rout 
roy rue ruelle ruer rule ruler rull ruller run runt 
rupee rupert rupture ruru rus rush russ rust rustre rut 
shi shih ship shipper shish shlu sip sipe siper sipper 
sis sish sisi siss sissu sist sistrurus speel speer spelk 
spell speller splurt spun spur spurn spurrer spurt sput ssi 
ssu stre stree streek streel streeler streep streke streperous strepsis 
strey stroup stroy stroyer strue strunt strut stu stue stull 
stuller stun stunt stupe stupeous stupp sturnus sturt stuss stut 
sue suer suerre suld sulk sulker sulky sull sully sulu 
sun sunn sunt sunup sup supe super superoutput supper supple 
supplely supply sur sure surely surrey sus susi susu susurr 
susurrous susurrus sutu suture suu tree treey trek trekker trey 
troupe trouper trout troy true truer trull truller truly trun 
trush truss trust tshi tst tsun tsutsutsi tue tule tulle 
tulu tun tunu tup tupek tupi tur turn turnup turr 
turus tush tussis tussur tut tuts tutu tutulus ule ull 
uller ulu ululu unreel unrule unruly unrun unrust untrue untruly 
untruss untrust unturn unurn upper upperer uppish uppishly uppull uppush 
upspurt upsun upsup uptree uptruss upturn ure urn uro uru 
urus urushi ush ust usun usure usurer utu yee yeel 
yeld yelk yell yeller yelp yelper yeo yep yer yere 
yern yoe yor yore you youl youp your yourn yoy 

Nota: Ho usato la matrice dizionario e carattere all'inizio di questa discussione. Il codice è stato eseguito sul mio MacBookPro, qui di seguito alcune informazioni sulla macchina.

Nome del modello: MacBook Pro
  Identifier Modello: MacBookPro8,1
  Nome processore: Intel Core i5
  Velocità del processore: 2.3 GHz
  Numero di processori: 1
  Numero totale di nuclei: 2
  L2 Cache (per core): 256 KB
  L3 cache: 3 MB
  Memoria: 4 GB
  Boot ROM Versione: MBP81.0047.B0E
  SMC versione (sistema): 1.68f96

Ho risolto anche questo, con Java. La mia applicazione è lunga 269 linee e abbastanza facile da usare. In primo luogo è necessario creare una nuova istanza della classe boggler e quindi chiamare la funzione risolvere con la griglia come parametro. Ci vogliono circa 100 ms per caricare il dizionario di 50 000 parole sul mio computer e trova le parole in circa 10-20 ms. Le parole trovate vengono memorizzate in un ArrayList, foundWords.

import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.URISyntaxException;
import java.net.URL;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Comparator;

public class Boggler {
    private ArrayList<String> words = new ArrayList<String>();      
    private ArrayList<String> roundWords = new ArrayList<String>(); 
    private ArrayList<Word> foundWords = new ArrayList<Word>();     
    private char[][] letterGrid = new char[4][4];                   
    private String letters;                                         

    public Boggler() throws FileNotFoundException, IOException, URISyntaxException {
        long startTime = System.currentTimeMillis();

        URL path = GUI.class.getResource("words.txt");
        BufferedReader br = new BufferedReader(new InputStreamReader(new FileInputStream(new File(path.toURI()).getAbsolutePath()), "iso-8859-1"));
        String line;
        while((line = br.readLine()) != null) {
            if(line.length() < 3 || line.length() > 10) {
                continue;
            }

            this.words.add(line);
        }
    }

    public ArrayList<Word> getWords() {
        return this.foundWords;
    }

    public void solve(String letters) {
        this.letters = "";
        this.foundWords = new ArrayList<Word>();

        for(int i = 0; i < letters.length(); i++) {
            if(!this.letters.contains(letters.substring(i, i + 1))) {
                this.letters += letters.substring(i, i + 1);
            }
        }

        for(int i = 0; i < 4; i++) {
            for(int j = 0; j < 4; j++) {
                this.letterGrid[i][j] = letters.charAt(i * 4 + j);
            }
        }

        System.out.println(Arrays.deepToString(this.letterGrid));               

        this.roundWords = new ArrayList<String>();      
        String pattern = "[" + this.letters + "]+";     

        for(int i = 0; i < this.words.size(); i++) {

            if(this.words.get(i).matches(pattern)) {
                this.roundWords.add(this.words.get(i));
            }
        }

        for(int i = 0; i < this.roundWords.size(); i++) {
            Word word = checkForWord(this.roundWords.get(i));

            if(word != null) {
                System.out.println(word);
                this.foundWords.add(word);
            }
        }       
    }

    private Word checkForWord(String word) {
        char initial = word.charAt(0);
        ArrayList<LetterCoord> startPoints = new ArrayList<LetterCoord>();

        int x = 0;  
        int y = 0;
        for(char[] row: this.letterGrid) {
            x = 0;

            for(char letter: row) {
                if(initial == letter) {
                    startPoints.add(new LetterCoord(x, y));
                }

                x++;
            }

            y++;
        }

        ArrayList<LetterCoord> letterCoords = null;
        for(int initialTry = 0; initialTry < startPoints.size(); initialTry++) {
            letterCoords = new ArrayList<LetterCoord>();    

            x = startPoints.get(initialTry).getX(); 
            y = startPoints.get(initialTry).getY();

            LetterCoord initialCoord = new LetterCoord(x, y);
            letterCoords.add(initialCoord);

            letterLoop: for(int letterIndex = 1; letterIndex < word.length(); letterIndex++) {
                LetterCoord lastCoord = letterCoords.get(letterCoords.size() - 1);  
                char currentChar = word.charAt(letterIndex);                        

                ArrayList<LetterCoord> letterLocations = getNeighbours(currentChar, lastCoord.getX(), lastCoord.getY());

                if(letterLocations == null) {
                    return null;    
                }       

                for(int foundIndex = 0; foundIndex < letterLocations.size(); foundIndex++) {
                    if(letterIndex != word.length() - 1 && true == false) {
                        char nextChar = word.charAt(letterIndex + 1);
                        int lastX = letterCoords.get(letterCoords.size() - 1).getX();
                        int lastY = letterCoords.get(letterCoords.size() - 1).getY();

                        ArrayList<LetterCoord> possibleIndex = getNeighbours(nextChar, lastX, lastY);
                        if(possibleIndex != null) {
                            if(!letterCoords.contains(letterLocations.get(foundIndex))) {
                                letterCoords.add(letterLocations.get(foundIndex));
                            }
                            continue letterLoop;
                        } else {
                            return null;
                        }
                    } else {
                        if(!letterCoords.contains(letterLocations.get(foundIndex))) {
                            letterCoords.add(letterLocations.get(foundIndex));

                            continue letterLoop;
                        }
                    }
                }
            }

            if(letterCoords != null) {
                if(letterCoords.size() == word.length()) {
                    Word w = new Word(word);
                    w.addList(letterCoords);
                    return w;
                } else {
                    return null;
                }
            }
        }

        if(letterCoords != null) {
            Word foundWord = new Word(word);
            foundWord.addList(letterCoords);

            return foundWord;
        }

        return null;
    }

    public ArrayList<LetterCoord> getNeighbours(char letterToSearch, int x, int y) {
        ArrayList<LetterCoord> neighbours = new ArrayList<LetterCoord>();

        for(int _y = y - 1; _y <= y + 1; _y++) {
            for(int _x = x - 1; _x <= x + 1; _x++) {
                if(_x < 0 || _y < 0 || (_x == x && _y == y) || _y > 3 || _x > 3) {
                    continue;
                }

                if(this.letterGrid[_y][_x] == letterToSearch && !neighbours.contains(new LetterCoord(_x, _y))) {
                    neighbours.add(new LetterCoord(_x, _y));
                }
            }
        }

        if(neighbours.isEmpty()) {
            return null;
        } else {
            return neighbours;
        }
    }
}

class Word {
    private String word;    
    private ArrayList<LetterCoord> letterCoords = new ArrayList<LetterCoord>();

    public Word(String word) {
        this.word = word;
    }

    public boolean addCoords(int x, int y) {
        LetterCoord lc = new LetterCoord(x, y);

        if(!this.letterCoords.contains(lc)) {
            this.letterCoords.add(lc);

            return true;
        }

        return false;
    }

    public void addList(ArrayList<LetterCoord> letterCoords) {
        this.letterCoords = letterCoords;
    } 

    @Override
    public String toString() {
        String outputString = this.word + " ";
        for(int i = 0; i < letterCoords.size(); i++) {
            outputString += "(" + letterCoords.get(i).getX() + ", " + letterCoords.get(i).getY() + ") ";
        }

        return outputString;
    }

    public String getWord() {
        return this.word;
    }

    public ArrayList<LetterCoord> getList() {
        return this.letterCoords;
    }
}

class LetterCoord extends ArrayList {
    private int x;          
    private int y;          

    public LetterCoord(int x, int y) {
        this.x = x;
        this.y = y;
    }

    public int getX() {
        return this.x;
    }

    public int getY() {
        return this.y;
    }

    @Override
    public boolean equals(Object o) {
        if(!(o instanceof LetterCoord)) {
            return false;
        }

        LetterCoord lc = (LetterCoord) o;

        if(this.x == lc.getX() &&
                this.y == lc.getY()) {
            return true;
        }

        return false;
    }

    @Override
    public int hashCode() {
        int hash = 7;
        hash = 29 * hash + this.x;
        hash = 24 * hash + this.y;
        return hash;
    }
}

Ho risolto questo in c. Ci vogliono circa 48 ms per funzionare sulla mia macchina (con circa il 98% del tempo trascorso il caricamento del dizionario dal disco e creare il trie). Il dizionario è / usr / share / dict / americano-inglese, che ha 62886 parole.

codice sorgente

Ho risolto questo perfettamente e molto veloce. Ho messo in un app Android. Guarda il video al link Play Store per vederlo in azione.

Word Trucchi è un app che "cricche" qualsiasi gioco di parole stile matrix. Questa applicazione è stata costruita per aiutarmi a barare al parola scrambler. Può essere utilizzato per le ricerche di parole, Ruzzle, le parole, cercatore di parola, parola crepa, boggle, e molto altro ancora!

Si può vedere qui https://play.google.com/store/apps/details ? id = com.harris.wordcracker

Visualizza l'applicazione in azione nel video https://www.youtube.com/watch?v=DL2974WmNAI

Autorizzato sotto: CC-BY-SA insieme a attribuzione
Non affiliato a StackOverflow
scroll top