Domanda

Come posso calcolare la distanza tra due punti specificati da latitudine e longitudine?

Per chiarimenti vorrei la distanza in chilometri;i punti utilizzano il sistema WGS84 e mi piacerebbe capire la relativa precisione degli approcci disponibili.

È stato utile?

Soluzione

Questo collegamento potrebbe esserti utile, poiché descrive in dettaglio l'uso di Formula Haversine per calcolare la distanza.

Estratto:

Questo script [in JavaScript] calcola le distanze del grande cerchio tra i due punti-cioè la distanza più breve sulla superficie terrestre-usando la formula "Haversine".

function getDistanceFromLatLonInKm(lat1,lon1,lat2,lon2) {
  var R = 6371; // Radius of the earth in km
  var dLat = deg2rad(lat2-lat1);  // deg2rad below
  var dLon = deg2rad(lon2-lon1); 
  var a = 
    Math.sin(dLat/2) * Math.sin(dLat/2) +
    Math.cos(deg2rad(lat1)) * Math.cos(deg2rad(lat2)) * 
    Math.sin(dLon/2) * Math.sin(dLon/2)
    ; 
  var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a)); 
  var d = R * c; // Distance in km
  return d;
}

function deg2rad(deg) {
  return deg * (Math.PI/180)
}

Altri suggerimenti

Avevo bisogno di calcolare molte distanze tra i punti per il mio progetto, quindi sono andato avanti e ho provato a ottimizzare il codice, che ho trovato qui.In media in diversi browser la mia nuova implementazione corre 2 volte più velocemente rispetto alla risposta più votata.

function distance(lat1, lon1, lat2, lon2) {
  var p = 0.017453292519943295;    // Math.PI / 180
  var c = Math.cos;
  var a = 0.5 - c((lat2 - lat1) * p)/2 + 
          c(lat1 * p) * c(lat2 * p) * 
          (1 - c((lon2 - lon1) * p))/2;

  return 12742 * Math.asin(Math.sqrt(a)); // 2 * R; R = 6371 km
}

Puoi giocare con il mio jsPerf e vedere il file risultati qui.

Recentemente ho avuto bisogno di fare lo stesso in Python, quindi ecco un implementazione di Python:

from math import cos, asin, sqrt
def distance(lat1, lon1, lat2, lon2):
    p = 0.017453292519943295     #Pi/180
    a = 0.5 - cos((lat2 - lat1) * p)/2 + cos(lat1 * p) * cos(lat2 * p) * (1 - cos((lon2 - lon1) * p)) / 2
    return 12742 * asin(sqrt(a)) #2*R*asin...

E per completezza: Haversine suWiki.

Ecco un'implementazione C#:

static class DistanceAlgorithm
{
    const double PIx = 3.141592653589793;
    const double RADIUS = 6378.16;

    /// <summary>
    /// Convert degrees to Radians
    /// </summary>
    /// <param name="x">Degrees</param>
    /// <returns>The equivalent in radians</returns>
    public static double Radians(double x)
    {
        return x * PIx / 180;
    }

    /// <summary>
    /// Calculate the distance between two places.
    /// </summary>
    /// <param name="lon1"></param>
    /// <param name="lat1"></param>
    /// <param name="lon2"></param>
    /// <param name="lat2"></param>
    /// <returns></returns>
    public static double DistanceBetweenPlaces(
        double lon1,
        double lat1,
        double lon2,
        double lat2)
    {
        double dlon = Radians(lon2 - lon1);
        double dlat = Radians(lat2 - lat1);

        double a = (Math.Sin(dlat / 2) * Math.Sin(dlat / 2)) + Math.Cos(Radians(lat1)) * Math.Cos(Radians(lat2)) * (Math.Sin(dlon / 2) * Math.Sin(dlon / 2));
        double angle = 2 * Math.Atan2(Math.Sqrt(a), Math.Sqrt(1 - a));
        return angle * RADIUS;
    }

}

Ecco un'implementazione Java della formula Haversine.

public final static double AVERAGE_RADIUS_OF_EARTH_KM = 6371;
public int calculateDistanceInKilometer(double userLat, double userLng,
  double venueLat, double venueLng) {

    double latDistance = Math.toRadians(userLat - venueLat);
    double lngDistance = Math.toRadians(userLng - venueLng);

    double a = Math.sin(latDistance / 2) * Math.sin(latDistance / 2)
      + Math.cos(Math.toRadians(userLat)) * Math.cos(Math.toRadians(venueLat))
      * Math.sin(lngDistance / 2) * Math.sin(lngDistance / 2);

    double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));

    return (int) (Math.round(AVERAGE_RADIUS_OF_EARTH_KM * c));
}

Tieni presente che qui stiamo arrotondando la risposta al km più vicino.

Grazie mille per tutto questo.Ho utilizzato il seguente codice nella mia app per iPhone Objective-C:

const double PIx = 3.141592653589793;
const double RADIO = 6371; // Mean radius of Earth in Km

double convertToRadians(double val) {

   return val * PIx / 180;
}

-(double)kilometresBetweenPlace1:(CLLocationCoordinate2D) place1 andPlace2:(CLLocationCoordinate2D) place2 {

        double dlon = convertToRadians(place2.longitude - place1.longitude);
        double dlat = convertToRadians(place2.latitude - place1.latitude);

        double a = ( pow(sin(dlat / 2), 2) + cos(convertToRadians(place1.latitude))) * cos(convertToRadians(place2.latitude)) * pow(sin(dlon / 2), 2);
        double angle = 2 * asin(sqrt(a));

        return angle * RADIO;
}

Latitudine e longitudine sono in formato decimale.Non ho utilizzato min() per la chiamata asin() poiché le distanze che sto utilizzando sono così piccole che non lo richiedono.

Ha dato risposte errate finché non ho inserito i valori in radianti - ora è più o meno lo stesso dei valori ottenuti dall'app Mappa di Apple :-)

Aggiornamento aggiuntivo:

Se utilizzi iOS4 o versioni successive, Apple fornisce alcuni metodi per farlo in modo che la stessa funzionalità possa essere ottenuta con:

-(double)kilometresBetweenPlace1:(CLLocationCoordinate2D) place1 andPlace2:(CLLocationCoordinate2D) place2 {

    MKMapPoint  start, finish;


    start = MKMapPointForCoordinate(place1);
    finish = MKMapPointForCoordinate(place2);

    return MKMetersBetweenMapPoints(start, finish) / 1000;
}

Questa è una semplice funzione PHP che fornirà un'approssimazione molto ragionevole (sotto il margine di errore del +/- 1%).

<?php
function distance($lat1, $lon1, $lat2, $lon2) {

    $pi80 = M_PI / 180;
    $lat1 *= $pi80;
    $lon1 *= $pi80;
    $lat2 *= $pi80;
    $lon2 *= $pi80;

    $r = 6372.797; // mean radius of Earth in km
    $dlat = $lat2 - $lat1;
    $dlon = $lon2 - $lon1;
    $a = sin($dlat / 2) * sin($dlat / 2) + cos($lat1) * cos($lat2) * sin($dlon / 2) * sin($dlon / 2);
    $c = 2 * atan2(sqrt($a), sqrt(1 - $a));
    $km = $r * $c;

    //echo '<br/>'.$km;
    return $km;
}
?>

Come detto prima;la terra NON è una sfera.È come una vecchia, vecchissima palla da baseball con cui Mark McGwire ha deciso di esercitarsi: è piena di ammaccature e protuberanze.I calcoli più semplici (come questo) lo trattano come una sfera.

Diversi metodi possono essere più o meno precisi a seconda di dove ti trovi su questo ovoide irregolare E di quanto sono distanti i tuoi punti (più vicini sono, minore è il margine di errore assoluto).Quanto più precise sono le tue aspettative, tanto più complessi saranno i calcoli.

Per maggiori informazioni: distanza geografica di wikipedia

Inserisco qui il mio esempio di lavoro.

Elenca tutti i punti nella tabella aventi una distanza tra un punto designato (usiamo un punto casuale - lat:45.20327, long:23.7806) inferiore a 50 KM, con latitudine e longitudine, in MySQL (i campi della tabella sono coord_lat e coord_long):

Elenca tutti quelli che hanno DISTANZA<50, in Chilometri (considerato il raggio terrestre 6371 KM):

SELECT denumire, (6371 * acos( cos( radians(45.20327) ) * cos( radians( coord_lat ) ) * cos( radians( 23.7806 ) - radians(coord_long) ) + sin( radians(45.20327) ) * sin( radians(coord_lat) ) )) AS distanta 
FROM obiective 
WHERE coord_lat<>'' 
    AND coord_long<>'' 
HAVING distanta<50 
ORDER BY distanta desc

L'esempio precedente è stato testato in MySQL 5.0.95 e 5.5.16 (Linux).

Nell'altra risponde un'implementazione in manca.

Calcolare la distanza tra due punti è abbastanza semplice con distm funzione da geosphere pacchetto:

distm(p1, p2, fun = distHaversine)

Dove:

p1 = longitude/latitude for point(s)
p2 = longitude/latitude for point(s)
# type of distance calculation
fun = distCosine / distHaversine / distVincentySphere / distVincentyEllipsoid 

Poiché la terra non è perfettamente sferica, il Formula di Vincenty per gli ellissoidi è probabilmente il modo migliore per calcolare le distanze.Così nel geosphere pacchetto che usi quindi:

distm(p1, p2, fun = distVincentyEllipsoid)

Ovviamente non devi necessariamente usarlo geosphere pacchetto, puoi anche calcolare la distanza in base R con una funzione:

hav.dist <- function(long1, lat1, long2, lat2) {
  R <- 6371
  diff.long <- (long2 - long1)
  diff.lat <- (lat2 - lat1)
  a <- sin(diff.lat/2)^2 + cos(lat1) * cos(lat2) * sin(diff.long/2)^2
  b <- 2 * asin(pmin(1, sqrt(a))) 
  d = R * b
  return(d)
}

L'haversine è sicuramente una buona formula probabilmente per la maggior parte dei casi, altre risposte la includono già, quindi non prenderò questo spazio.Ma è importante notare che non importa quale formula venga utilizzata (sì, non solo una).A causa dell’ampia gamma di precisione possibile e del tempo di calcolo richiesto.La scelta della formula richiede un po’ più di riflessione rispetto a una semplice risposta semplice.

Questo post di una persona della NASA è il migliore che ho trovato discutendo le opzioni

http://www.cs.nyu.edu/visual/home/proj/tiger/gisfaq.html

Ad esempio, se stai semplicemente ordinando le righe in base alla distanza in un raggio di 100 miglia.La formula della terra piatta sarà molto più veloce di quella Haversine.

HalfPi = 1.5707963;
R = 3956; /* the radius gives you the measurement unit*/

a = HalfPi - latoriginrad;
b = HalfPi - latdestrad;
u = a * a + b * b;
v = - 2 * a * b * cos(longdestrad - longoriginrad);
c = sqrt(abs(u + v));
return R * c;

Nota che c'è solo un coseno e una radice quadrata.Contro 9 di loro con la formula Haversine.

È possibile utilizzare la build in CLLocationDistance per calcolare questo:

CLLocation *location1 = [[CLLocation alloc] initWithLatitude:latitude1 longitude:longitude1];
CLLocation *location2 = [[CLLocation alloc] initWithLatitude:latitude2 longitude:longitude2];
[self distanceInMetersFromLocation:location1 toLocation:location2]

- (int)distanceInMetersFromLocation:(CLLocation*)location1 toLocation:(CLLocation*)location2 {
    CLLocationDistance distanceInMeters = [location1 distanceFromLocation:location2];
    return distanceInMeters;
}

Nel tuo caso se vuoi i chilometri basta dividerli per 1000.

Non mi piace aggiungere ancora un'altra risposta, ma l'API di Google Maps v.3 ha una geometria sferica (e altro).Dopo aver convertito il tuo WGS84 in gradi decimali puoi fare questo:

<script src="http://maps.google.com/maps/api/js?sensor=false&libraries=geometry" type="text/javascript"></script>  

distance = google.maps.geometry.spherical.computeDistanceBetween(
    new google.maps.LatLng(fromLat, fromLng), 
    new google.maps.LatLng(toLat, toLng));

Nessuna parola su quanto siano accurati i calcoli di Google o anche quale modello viene utilizzato (anche se dice "sferico" anziché "geoide").A proposito, la distanza "in linea retta" sarà ovviamente diversa dalla distanza se si viaggia sulla superficie terrestre, come tutti sembrano presumere.

L'origine di implementazione di Python è il centro dei contigui Stati Uniti.

from haversine import haversine
origin = (39.50, 98.35)
paris = (48.8567, 2.3508)
haversine(origin, paris, miles=True)

Per ottenere la risposta in chilometri è sufficiente impostare miles=false.

Potrebbe esserci una soluzione più semplice e più corretta:Il perimetro della terra è di 40.000 Km all'equatore, circa 37.000 nel ciclo di Greenwich (o qualsiasi longitudine).Così:

pythagoras = function (lat1, lon1, lat2, lon2) {
   function sqr(x) {return x * x;}
   function cosDeg(x) {return Math.cos(x * Math.PI / 180.0);}

   var earthCyclePerimeter = 40000000.0 * cosDeg((lat1 + lat2) / 2.0);
   var dx = (lon1 - lon2) * earthCyclePerimeter / 360.0;
   var dy = 37000000.0 * (lat1 - lat2) / 360.0;

   return Math.sqrt(sqr(dx) + sqr(dy));
};

Sono d'accordo che vada messo a punto perché, io stesso ho detto che è un ellissoide, quindi il raggio da moltiplicare per il coseno varia.Ma è un po' più preciso.Rispetto a Google Maps ha ridotto significativamente l'errore.

Tutte le risposte di cui sopra presuppongono che la Terra sia una sfera.Tuttavia, un'approssimazione più accurata sarebbe quella di uno sferoide oblato.

a= 6378.137#equitorial radius in km
b= 6356.752#polar radius in km

def Distance(lat1, lons1, lat2, lons2):
    lat1=math.radians(lat1)
    lons1=math.radians(lons1)
    R1=(((((a**2)*math.cos(lat1))**2)+(((b**2)*math.sin(lat1))**2))/((a*math.cos(lat1))**2+(b*math.sin(lat1))**2))**0.5 #radius of earth at lat1
    x1=R*math.cos(lat1)*math.cos(lons1)
    y1=R*math.cos(lat1)*math.sin(lons1)
    z1=R*math.sin(lat1)

    lat2=math.radians(lat2)
    lons2=math.radians(lons2)
    R1=(((((a**2)*math.cos(lat2))**2)+(((b**2)*math.sin(lat2))**2))/((a*math.cos(lat2))**2+(b*math.sin(lat2))**2))**0.5 #radius of earth at lat2
    x2=R*math.cos(lat2)*math.cos(lons2)
    y2=R*math.cos(lat2)*math.sin(lons2)
    z2=R*math.sin(lat2)

    return ((x1-x2)**2+(y1-y2)**2+(z1-z2)**2)**0.5

Ecco un dattiloscritto implementazione della formula di Haversine

static getDistanceFromLatLonInKm(lat1: number, lon1: number, lat2: number, lon2: number): number {
    var deg2Rad = deg => {
        return deg * Math.PI / 180;
    }

    var r = 6371; // Radius of the earth in km
    var dLat = deg2Rad(lat2 - lat1);   
    var dLon = deg2Rad(lon2 - lon1);
    var a =
        Math.sin(dLat / 2) * Math.sin(dLat / 2) +
        Math.cos(deg2Rad(lat1)) * Math.cos(deg2Rad(lat2)) *
        Math.sin(dLon / 2) * Math.sin(dLon / 2);
    var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
    var d = r * c; // Distance in km
    return d;
}

Questo script [in PHP] calcola le distanze tra i due punti.

public static function getDistanceOfTwoPoints($source, $dest, $unit='K') {
        $lat1 = $source[0];
        $lon1 = $source[1];
        $lat2 = $dest[0];
        $lon2 = $dest[1];

        $theta = $lon1 - $lon2;
        $dist = sin(deg2rad($lat1)) * sin(deg2rad($lat2)) +  cos(deg2rad($lat1)) * cos(deg2rad($lat2)) * cos(deg2rad($theta));
        $dist = acos($dist);
        $dist = rad2deg($dist);
        $miles = $dist * 60 * 1.1515;
        $unit = strtoupper($unit);

        if ($unit == "K") {
            return ($miles * 1.609344);
        }
        else if ($unit == "M")
        {
            return ($miles * 1.609344 * 1000);
        }
        else if ($unit == "N") {
            return ($miles * 0.8684);
        } 
        else {
            return $miles;
        }
    }

Ecco l'implementazione SQL per calcolare la distanza in km,

SELECT UserId, ( 3959 * acos( cos( radians( your latitude here ) ) * cos( radians(latitude) ) * 
cos( radians(longitude) - radians( your longitude here ) ) + sin( radians( your latitude here ) ) * 
sin( radians(latitude) ) ) ) AS distance FROM user HAVING
distance < 5  ORDER BY distance LIMIT 0 , 5;

Per calcolare la distanza tra due punti su una sfera devi fare il Calcolo del Cerchio Massimo.

Esistono numerose librerie C/C++ che aiutano con la proiezione della mappa Strumenti della mappa se hai bisogno di riproiettare le tue distanze su una superficie piana.Per fare questo avrai bisogno della stringa di proiezione dei vari sistemi di coordinate.

Potresti anche trovare Finestra della mappa uno strumento utile per visualizzare i punti.Inoltre, poiché è open source, è un'utile guida su come utilizzare la libreria proj.dll, che sembra essere la libreria di proiezione open source principale.

Ecco l'implementazione della risposta accettata trasferita su Java nel caso qualcuno ne abbia bisogno.

package com.project529.garage.util;


/**
 * Mean radius.
 */
private static double EARTH_RADIUS = 6371;

/**
 * Returns the distance between two sets of latitudes and longitudes in meters.
 * <p/>
 * Based from the following JavaScript SO answer:
 * http://stackoverflow.com/questions/27928/calculate-distance-between-two-latitude-longitude-points-haversine-formula,
 * which is based on https://en.wikipedia.org/wiki/Haversine_formula (error rate: ~0.55%).
 */
public double getDistanceBetween(double lat1, double lon1, double lat2, double lon2) {
    double dLat = toRadians(lat2 - lat1);
    double dLon = toRadians(lon2 - lon1);

    double a = Math.sin(dLat / 2) * Math.sin(dLat / 2) +
            Math.cos(toRadians(lat1)) * Math.cos(toRadians(lat2)) *
                    Math.sin(dLon / 2) * Math.sin(dLon / 2);
    double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
    double d = EARTH_RADIUS * c;

    return d;
}

public double toRadians(double degrees) {
    return degrees * (Math.PI / 180);
}

Come sottolineato, un calcolo accurato dovrebbe tenere conto del fatto che la Terra non è una sfera perfetta.Ecco alcuni confronti tra i vari algoritmi offerti qui:

geoDistance(50,5,58,3)
Haversine: 899 km
Maymenn: 833 km
Keerthana: 897 km
google.maps.geometry.spherical.computeDistanceBetween(): 900 km

geoDistance(50,5,-58,-3)
Haversine: 12030 km
Maymenn: 11135 km
Keerthana: 10310 km
google.maps.geometry.spherical.computeDistanceBetween(): 12044 km

geoDistance(.05,.005,.058,.003)
Haversine: 0.9169 km
Maymenn: 0.851723 km
Keerthana: 0.917964 km
google.maps.geometry.spherical.computeDistanceBetween(): 0.917964 km

geoDistance(.05,80,.058,80.3)
Haversine: 33.37 km
Maymenn: 33.34 km
Keerthana: 33.40767 km
google.maps.geometry.spherical.computeDistanceBetween(): 33.40770 km

Su piccole distanze, l'algoritmo di Keerthana sembra coincidere con quello di Google Maps.Google Maps non sembra seguire alcun algoritmo semplice, suggerendo che potrebbe essere il metodo più accurato in questo caso.

Ad ogni modo, ecco un'implementazione Javascript dell'algoritmo di Keerthana:

function geoDistance(lat1, lng1, lat2, lng2){
    const a = 6378.137; // equitorial radius in km
    const b = 6356.752; // polar radius in km

    var sq = x => (x*x);
    var sqr = x => Math.sqrt(x);
    var cos = x => Math.cos(x);
    var sin = x => Math.sin(x);
    var radius = lat => sqr((sq(a*a*cos(lat))+sq(b*b*sin(lat)))/(sq(a*cos(lat))+sq(b*sin(lat))));

    lat1 = lat1 * Math.PI / 180;
    lng1 = lng1 * Math.PI / 180;
    lat2 = lat2 * Math.PI / 180;
    lng2 = lng2 * Math.PI / 180;

    var R1 = radius(lat1);
    var x1 = R1*cos(lat1)*cos(lng1);
    var y1 = R1*cos(lat1)*sin(lng1);
    var z1 = R1*sin(lat1);

    var R2 = radius(lat2);
    var x2 = R2*cos(lat2)*cos(lng2);
    var y2 = R2*cos(lat2)*sin(lng2);
    var z2 = R2*sin(lat2);

    return sqr(sq(x1-x2)+sq(y1-y2)+sq(z1-z2));
}

Ecco l'implementazione VB.NET, questa implementazione ti darà il risultato in KM o Miglia in base a un valore Enum che passi.

Public Enum DistanceType
    Miles
    KiloMeters
End Enum

Public Structure Position
    Public Latitude As Double
    Public Longitude As Double
End Structure

Public Class Haversine

    Public Function Distance(Pos1 As Position,
                             Pos2 As Position,
                             DistType As DistanceType) As Double

        Dim R As Double = If((DistType = DistanceType.Miles), 3960, 6371)

        Dim dLat As Double = Me.toRadian(Pos2.Latitude - Pos1.Latitude)

        Dim dLon As Double = Me.toRadian(Pos2.Longitude - Pos1.Longitude)

        Dim a As Double = Math.Sin(dLat / 2) * Math.Sin(dLat / 2) + Math.Cos(Me.toRadian(Pos1.Latitude)) * Math.Cos(Me.toRadian(Pos2.Latitude)) * Math.Sin(dLon / 2) * Math.Sin(dLon / 2)

        Dim c As Double = 2 * Math.Asin(Math.Min(1, Math.Sqrt(a)))

        Dim result As Double = R * c

        Return result

    End Function

    Private Function toRadian(val As Double) As Double

        Return (Math.PI / 180) * val

    End Function

End Class

Ho condensato il calcolo semplificando la formula.

Eccolo in Ruby:

include Math
earth_radius_mi = 3959
radians = lambda { |deg| deg * PI / 180 }
coord_radians = lambda { |c| { :lat => radians[c[:lat]], :lng => radians[c[:lng]] } }

# from/to = { :lat => (latitude_in_degrees), :lng => (longitude_in_degrees) }
def haversine_distance(from, to)
  from, to = coord_radians[from], coord_radians[to]
  cosines_product = cos(to[:lat]) * cos(from[:lat]) * cos(from[:lng] - to[:lng])
  sines_product = sin(to[:lat]) * sin(from[:lat])
  return earth_radius_mi * acos(cosines_product + sines_product)
end
function getDistanceFromLatLonInKm(lat1,lon1,lat2,lon2,units) {
  var R = 6371; // Radius of the earth in km
  var dLat = deg2rad(lat2-lat1);  // deg2rad below
  var dLon = deg2rad(lon2-lon1); 
  var a = 
    Math.sin(dLat/2) * Math.sin(dLat/2) +
    Math.cos(deg2rad(lat1)) * Math.cos(deg2rad(lat2)) * 
    Math.sin(dLon/2) * Math.sin(dLon/2)
    ; 
  var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a)); 
  var d = R * c; 
  var miles = d / 1.609344; 

if ( units == 'km' ) {  
return d; 
 } else {
return miles;
}}

Soluzione di Chuck, valida anche per chilometri.

Ecco la mia implementazione Java per il calcolo della distanza tramite gradi decimali dopo alcune ricerche.Ho usato il raggio medio del mondo (da Wikipedia) in km.Se desideri ottenere miglia, utilizza il raggio mondiale in miglia.

public static double distanceLatLong2(double lat1, double lng1, double lat2, double lng2) 
{
  double earthRadius = 6371.0d; // KM: use mile here if you want mile result

  double dLat = toRadian(lat2 - lat1);
  double dLng = toRadian(lng2 - lng1);

  double a = Math.pow(Math.sin(dLat/2), 2)  + 
          Math.cos(toRadian(lat1)) * Math.cos(toRadian(lat2)) * 
          Math.pow(Math.sin(dLng/2), 2);

  double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));

  return earthRadius * c; // returns result kilometers
}

public static double toRadian(double degrees) 
{
  return (degrees * Math.PI) / 180.0d;
}

In Mysql utilizzare la seguente funzione per passare i parametri come using POINT(LONG,LAT)

CREATE FUNCTION `distance`(a POINT, b POINT)
 RETURNS double
    DETERMINISTIC
BEGIN

RETURN

GLength( LineString(( PointFromWKB(a)), (PointFromWKB(b)))) * 100000; -- To Make the distance in meters

END;
function getDistanceFromLatLonInKm(position1, position2) {
    "use strict";
    var deg2rad = function (deg) { return deg * (Math.PI / 180); },
        R = 6371,
        dLat = deg2rad(position2.lat - position1.lat),
        dLng = deg2rad(position2.lng - position1.lng),
        a = Math.sin(dLat / 2) * Math.sin(dLat / 2)
            + Math.cos(deg2rad(position1.lat))
            * Math.cos(deg2rad(position1.lat))
            * Math.sin(dLng / 2) * Math.sin(dLng / 2),
        c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
    return R * c;
}

console.log(getDistanceFromLatLonInKm(
    {lat: 48.7931459, lng: 1.9483572},
    {lat: 48.827167, lng: 2.2459745}
));

ecco un esempio in postgres sql (in km, per la versione in miglia, sostituire 1.609344 con la versione 0.8684)

CREATE OR REPLACE FUNCTION public.geodistance(alat float, alng float, blat  

float, blng  float)
  RETURNS float AS
$BODY$
DECLARE
    v_distance float;
BEGIN

    v_distance = asin( sqrt(
            sin(radians(blat-alat)/2)^2 
                + (
                    (sin(radians(blng-alng)/2)^2) *
                    cos(radians(alat)) *
                    cos(radians(blat))
                )
          )
        ) * cast('7926.3352' as float) * cast('1.609344' as float) ;


    RETURN v_distance;
END 
$BODY$
language plpgsql VOLATILE SECURITY DEFINER;
alter function geodistance(alat float, alng float, blat float, blng float)
owner to postgres;

c'è un buon esempio qui per calcolare la distanza con PHP http://www.geodatasource.com/developers/php :

 function distance($lat1, $lon1, $lat2, $lon2, $unit) {

     $theta = $lon1 - $lon2;
     $dist = sin(deg2rad($lat1)) * sin(deg2rad($lat2)) +  cos(deg2rad($lat1)) * cos(deg2rad($lat2)) * cos(deg2rad($theta));
     $dist = acos($dist);
     $dist = rad2deg($dist);
     $miles = $dist * 60 * 1.1515;
     $unit = strtoupper($unit);

     if ($unit == "K") {
         return ($miles * 1.609344);
     } else if ($unit == "N") {
          return ($miles * 0.8684);
     } else {
          return $miles;
     }
 }

Si è verificato un problema con math.deg in LUA...se qualcuno conosce una soluzione, pulisca questo codice!

Nel frattempo ecco un'implementazione di Haversine in LUA (usala con Redis!)

function calcDist(lat1, lon1, lat2, lon2)
    lat1= lat1*0.0174532925
    lat2= lat2*0.0174532925
    lon1= lon1*0.0174532925
    lon2= lon2*0.0174532925

    dlon = lon2-lon1
    dlat = lat2-lat1

    a = math.pow(math.sin(dlat/2),2) + math.cos(lat1) * math.cos(lat2) * math.pow(math.sin(dlon/2),2)
    c = 2 * math.asin(math.sqrt(a))
    dist = 6371 * c      -- multiply by 0.621371 to convert to miles
    return dist
end

saluti!

Eccone un altro convertito in Rubino codice:

include Math
#Note: from/to = [lat, long]

def get_distance_in_km(from, to)
  radians = lambda { |deg| deg * Math.PI / 180 }
  radius = 6371 # Radius of the earth in kilometer
  dLat = radians[to[0]-from[0]]
  dLon = radians[to[1]-from[1]]

  cosines_product = Math.sin(dLat/2) * Math.sin(dLat/2) + Math.cos(radians[from[0]]) * Math.cos(radians[to[1]]) * Math.sin(dLon/2) * Math.sin(dLon/2)

  c = 2 * Math.atan2(Math.sqrt(cosines_product), Math.sqrt(1-cosines_product)) 
  return radius * c # Distance in kilometer
end
Autorizzato sotto: CC-BY-SA insieme a attribuzione
Non affiliato a StackOverflow
scroll top