Question

I needed some help in trying to optimize this code portion ... Basically here's the thing .. I'm making this 'calligraphy pen' which gives the calligraphy effect by simply drawing a lot of adjacent slanted lines ... The problem is this: When I update the draw region using update() after every single draw of a slanted line, the output is correct, in the sense that updates are done in a timely manner, so that everything 'drawn' using the pen is immediately 'seen' the drawing.. however, because a lot (100s of them) of updates are done, the program slows down a little when run on the N900 ...

When I try to do a little optimization by running update after drawing all the slanted lines (so that all lines are updated onto the drawing board through a single update() ), the output is ... odd .... That is, immediately after drawing the lines, they lines seem broken (they have vacant patches where the drawing should have happened as well) ... however, if I trigger a redrawing of the form window (say, by changing the size of the form), the broken patches are immediately fixed !! When I run this program on my N900, it gets the initial broken output and stays like that, since I don't know how to enforce a redraw in this case ...

Here is the first 'optimized' code and output (partially correct/incorrect)

void Canvas::drawLineTo(const QPoint &endPoint)
{
QPainter painter(&image);
painter.setPen(QPen(Qt::black,1,Qt::SolidLine,Qt::RoundCap,Qt::RoundJoin));
int fx=0,fy=0,k=0;
qPoints.clear();
connectingPointsCalculator2(qPoints,lastPoint.x(),lastPoint.y(),endPoint.x(),endPoint.y());
int i=0;
int x,y;
for(i=0;i<qPoints.size();i++)
{
x=qPoints.at(i).x();
y=qPoints.at(i).y();
painter.setPen(Qt::black);
painter.drawLine(x-5,y-5,x+5,y+5); **// Drawing slanted lines**
}
**//Updating only once after many draws:**
update (QRect(QPoint(lastPoint.x()-5,lastPoint.y()-5), QPoint(endPoint.x()+5,endPoint.y()+5)).normalized());

modified = true;
lastPoint = endPoint;
}

Image right after scribbling on screen:

http://img823.imageshack.us/img823/8755/59943912.png

After re-adjusting the window size, all the broken links above are fixed like they should be ..

Here is the second un-optimized code (its output is correct right after drawing, just like in the second picture above):

void Canvas::drawLineTo(const QPoint &endPoint)
{
QPainter painter(&image);
painter.setPen(QPen(Qt::black,1,Qt::SolidLine,Qt::RoundCap,Qt::RoundJoin));
int fx=0,fy=0,k=0;
qPoints.clear();
connectingPointsCalculator2(qPoints,lastPoint.x(),lastPoint.y(),endPoint.x(),endPoint.y());
int i=0;
int x,y;
for(i=0;i<qPoints.size();i++)
{
x=qPoints.at(i).x();
y=qPoints.at(i).y();
painter.setPen(Qt::black);
painter.drawLine(x-5,y-5,x+5,y+5); **// Drawing slanted lines**
**//Updating repeatedly during the for loop:**
update(QRect(QPoint(x-5,y-5), QPoint(x+5,y+5)).normalized());//.adjusted(-rad,-rad,rad,rad));
}
modified = true;
int rad = (myPenWidth / 2) + 2;
lastPoint = endPoint;
}

Can anyone see what the issue might be ?

Was it helpful?

Solution

As I understand you should find min and max of x and y processed in your for-loop and use them in update(QRect(QPoint(minX-5, minY-5), QPoint(maxX+5, maxY+5)).normalized());

OTHER TIPS

Sorry if I misunderstood, but have you tried to use the "double buffer" approach? Instead of drawing directly on the screen, you "draw" your points and lines to a memory buffer. After that, you just copy the buffer to the screen. This is faster and avoids flickering.

I'm not sure exactly what your issue is with the broken lines, but I can offer you this advice: keep your pen around. Instead of this:

for(i=0;i<qPoints.size();i++)
{
    // ...
    painter.setPen(Qt::black);
    painter.drawLine(x-5,y-5,x+5,y+5); **// Drawing slanted lines**
    // ...
}

do this:

QPen black_pen(Qt::black);
for(i=0;i<qPoints.size();i++)
{
    // ...
    painter.setPen(black_pen);
    painter.drawLine(x-5,y-5,x+5,y+5); **// Drawing slanted lines**
    // ...
}

Even more, if you are repeatedly calling your drawLineTo function with the same pen every time, store the pen in your class and keep it around. At my company, we've found that to vastly reduce drawing times where we can take advantage of it. (One instance on a large image cut drawing times in half.)

One other note: I'm not sure what type the image you are painting is, but I'm assuming it is a QImage. When you are done drawing, if you will be using the unmodified image repeatedly, you might convert it once to a QPixmap. The QPixmap class is stored in a way that is supposed to be ready for blitting directly to the screen (but it a lot slower to modify in many cases, because of that).

Licensed under: CC-BY-SA with attribution
Not affiliated with StackOverflow
scroll top