سؤال

I want to build a windows Service, which should execute different methods at different times. Its not about accuracy at all. Im using a system.timers.timer, and regulate the different methods to be executed within the Eventhandler-method with counters. Thats working allright that far.

All of the methods are accessing a COM-port, making it neccessary to grant acceess-rights to only one method at a time. But since the methods can take some time to finish, the timer might tick again and want to execute another method while the COM-port is still being occupied. In this case, the event can and should just be dismissed.

Simplified down to one method, my elapsedEventHandler-method looks something like the following (try-catch and the different methods excluded here)

Note: While this is running perfectly on my Win7 x64, it struggles on a Win7 x86 machine with pretty much the very same software installed, whenever the method to be executed takes a long time. The timer wont tick any more, no Exception is thrown. Nothing! my question now is: Am I doing the part with access-control and the timer right, so that i can focus on other things? Im just not that familiar with timers and especially threading

     private static int m_synchPoint=0;
     private System.Timers.Timer timerForData = null;

    public MyNewService()
    {

        timerForData = new System.Timers.Timer();
        timerForData.Interval = 3000;
        timerForData.Elapsed += new ElapsedEventHandler(Timer_tick);
    }
    //Initialize all the timers, and start them
    protected override void OnStart(string[] args)
    {

        timerForData.AutoReset = true;
        timerForData.Enabled = true;
        timerForData.Start();
    }

    //Event-handled method
    private void Timer_tick(object sender, System.Timers.ElapsedEventArgs e)
    {
            ////safe to perform event - no other thread is running the event?                      
            if (System.Threading.Interlocked.CompareExchange(ref m_synchPoint, 1, 0) == 0)

            {
             //via different else-ifs basically always this is happening here, except switching aMethod,bMethod...
             processedevent++; 
             Thread workerThread = new Thread(aMethod);
             workerThread.Start();
             workerThread.Join(); 
             m_synchPoint=0;
             }
             else
             {
              //Just dismiss the event
              skippedevent++;
             }
     }   

Thank you very much in advance!
Any help is greatly appreciated!

هل كانت مفيدة؟

المحلول

If you want just skip method invocation while previous method didn't finish just use Monitor.TryEnter(lockObject) before calling your method.

EDIT: Here's an example -

public class OneCallAtATimeClass
{

    private object syncObject;

    public TimerExample()
    {
      syncObject = new object();
    }

    public void CalledFromTimer()
    {    
      if (Monitor.TryEnter(syncObject);)
      {
        try
        {
          InternalImplementation();
        }
        finally
        {
          Monitor.Exit(syncObject);
        }
      }    
    }

    private void InternalImplementation()
    {
      //Do some logic here
    }

  }

نصائح أخرى

I would recommend using System.Threading.Timer for this functionality. You can disable the timer when it executes, process your data, then re-enable the timer.

EDIT:

I think it makes more sense to use System.Threading.Timer because there isn't really a reason you need to drop the timer on a design surface, which is pretty much the only reason to use System.Timers.Timer. I really wish MS would remove it anyways, it's wrapping System.Threading.Timer which isn't all that difficult to use in the first place.

Yes, you do risk a problem with re-entrancy which is why I specified to change the timeout toTimeout.Infinite. You won't have this re-entrancy problem if you construct the timer with Timeout.Infinite.

public class MyClass
{
    private System.Threading.Timer _MyTimer;

public MyClass()
{
    _MyTimer = new Timer(OnElapsed, null, 0, Timeout.Infinite);
}

public void OnElapsed(object state)
{
    _MyTimer.Change(Timeout.Infinite, Timeout.Infinite);
    Console.WriteLine("I'm working");
    _MyTimer.Change(1000, Timeout.Infinite);
}

}

You can try this:

When the timer fires, disable the timer.

When the task is complete, re-enable the timer...possibly in the Finally clause.

You correctly use CompareExchange to test and set the m_synchPoint field when doing the initial check. You incorrectly use direct assignment to reset the value to 0 at the end of the method. You should use Interlocked.Exchange instead to reset the value to 0. As a side note, you should also change m_synchPoint to an instance field -- it should not be static.

مرخصة بموجب: CC-BY-SA مع الإسناد
لا تنتمي إلى StackOverflow
scroll top