ج كيفية "رسم" شجرة ثنائية إلى وحدة التحكم [مغلقة

StackOverflow https://stackoverflow.com/questions/801740

سؤال

ما هي الخوارزميات التي يمكن استخدامها لرسم شجرة ثنائية في وحدة التحكم؟ يتم تنفيذ الشجرة في C. على سبيل المثال ، سيتم عرض BST مع الأرقام: 2 3 4 5 8 في وحدة التحكم على النحو التالي:

alt text

هل كانت مفيدة؟

المحلول

الدفع طباعة الأشجار الثنائية في ASCII

من anyoneelse pastbin أدناه:

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!Code originally from /http://www.openasthra.com/c-tidbits/printing-binary-trees-in-ascii/
!!! Just saved it, cause the website is down.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Printing Binary Trees in Ascii

Here we are not going to discuss what binary trees are (please refer this, if you are looking for binary search trees), or their operations but printing them in ascii.

The below routine prints tree in ascii for a given Tree representation which contains list of nodes, and node structure is this

    struct Tree 
    {
      Tree * left, * right;
      int element;
    };

This pic illustrates what the below routine does on canvas..
ascii tree

Here is the printing routine..

    b5855d39a6b8a2735ddcaa04a404c125001 

Auxiliary routines..

    //This function prints the given level of the given tree, assuming
    //that the node has the given x cordinate.
    void print_level(asciinode *node, int x, int level) 
    {
      int i, isleft;
      if (node == NULL) return;
      isleft = (node->parent_dir == -1);
      if (level == 0) 
      {
        for (i=0; i<(x-print_next-((node->lablen-isleft)/2)); i++) 
        {
          printf(" ");
        }
        print_next += i;
        printf("%s", node->label);
        print_next += node->lablen;
      } 
      else if (node->edge_length >= level) 
      {
        if (node->left != NULL) 
        {
          for (i=0; i<(x-print_next-(level)); i++) 
          {
            printf(" ");
          }
          print_next += i;
          printf("/");
          print_next++;
        }
        if (node->right != NULL) 
        {
          for (i=0; i<(x-print_next+(level)); i++) 
          {
            printf(" ");
          }
          print_next += i;
          printf("\\");
          print_next++;
        }
      } 
      else 
      {
        print_level(node->left, 
                    x-node->edge_length-1, 
                    level-node->edge_length-1);
        print_level(node->right, 
                    x+node->edge_length+1, 
                    level-node->edge_length-1);
      }
    }


    //This function fills in the edge_length and 
    //height fields of the specified tree
    void compute_edge_lengths(asciinode *node) 
    {
      int h, hmin, i, delta;
      if (node == NULL) return;
      compute_edge_lengths(node->left);
      compute_edge_lengths(node->right);

      /* first fill in the edge_length of node */
      if (node->right == NULL && node->left == NULL) 
      {
        node->edge_length = 0;
      } 
      else 
      {
        if (node->left != NULL) 
        {
          for (i=0; i<node->left->height && i < MAX_HEIGHT; i++) 
          {
            rprofile[i] = -INFINITY;
          }
          compute_rprofile(node->left, 0, 0);
          hmin = node->left->height;
        } 
        else 
        {
          hmin = 0;
        }
        if (node->right != NULL) 
        {
          for (i=0; i<node->right->height && i < MAX_HEIGHT; i++) 
          {
            lprofile[i] = INFINITY;
          }
          compute_lprofile(node->right, 0, 0);
          hmin = MIN(node->right->height, hmin);
        } 
        else 
        {
          hmin = 0;
        }
        delta = 4;
        for (i=0; i<hmin; i++) 
        {
          delta = MAX(delta, gap + 1 + rprofile[i] - lprofile[i]);
        }

        //If the node has two children of height 1, then we allow the
        //two leaves to be within 1, instead of 2 
        if (((node->left != NULL && node->left->height == 1) ||
              (node->right != NULL && node->right->height == 1))&&delta>4) 
        {
          delta--;
        }

        node->edge_length = ((delta+1)/2) - 1;
      }

      //now fill in the height of node
      h = 1;
      if (node->left != NULL) 
      {
        h = MAX(node->left->height + node->edge_length + 1, h);
      }
      if (node->right != NULL) 
      {
        h = MAX(node->right->height + node->edge_length + 1, h);
      }
      node->height = h;
    }

    asciinode * build_ascii_tree_recursive(Tree * t) 
    {
      asciinode * node;

      if (t == NULL) return NULL;

      node = malloc(sizeof(asciinode));
      node->left = build_ascii_tree_recursive(t->left);
      node->right = build_ascii_tree_recursive(t->right);

      if (node->left != NULL) 
      {
        node->left->parent_dir = -1;
      }

      if (node->right != NULL) 
      {
        node->right->parent_dir = 1;
      }

      sprintf(node->label, "%d", t->element);
      node->lablen = strlen(node->label);

      return node;
    }


    //Copy the tree into the ascii node structre
    asciinode * build_ascii_tree(Tree * t) 
    {
      asciinode *node;
      if (t == NULL) return NULL;
      node = build_ascii_tree_recursive(t);
      node->parent_dir = 0;
      return node;
    }

    //Free all the nodes of the given tree
    void free_ascii_tree(asciinode *node) 
    {
      if (node == NULL) return;
      free_ascii_tree(node->left);
      free_ascii_tree(node->right);
      free(node);
    }

    //The following function fills in the lprofile array for the given tree.
    //It assumes that the center of the label of the root of this tree
    //is located at a position (x,y).  It assumes that the edge_length
    //fields have been computed for this tree.
    void compute_lprofile(asciinode *node, int x, int y) 
    {
      int i, isleft;
      if (node == NULL) return;
      isleft = (node->parent_dir == -1);
      lprofile[y] = MIN(lprofile[y], x-((node->lablen-isleft)/2));
      if (node->left != NULL) 
      {
        for (i=1; i <= node->edge_length && y+i < MAX_HEIGHT; i++) 
        {
          lprofile[y+i] = MIN(lprofile[y+i], x-i);
        }
      }
      compute_lprofile(node->left, x-node->edge_length-1, y+node->edge_length+1);
      compute_lprofile(node->right, x+node->edge_length+1, y+node->edge_length+1);
    }

    void compute_rprofile(asciinode *node, int x, int y) 
    {
      int i, notleft;
      if (node == NULL) return;
      notleft = (node->parent_dir != -1);
      rprofile[y] = MAX(rprofile[y], x+((node->lablen-notleft)/2));
      if (node->right != NULL) 
      {
        for (i=1; i <= node->edge_length && y+i < MAX_HEIGHT; i++) 
        {
          rprofile[y+i] = MAX(rprofile[y+i], x+i);
        }
      }
      compute_rprofile(node->left, x-node->edge_length-1, y+node->edge_length+1);
      compute_rprofile(node->right, x+node->edge_length+1, y+node->edge_length+1);
    }

Here is the asciii tree structure…

    struct asciinode_struct
    {
      asciinode * left, * right;

      //length of the edge from this node to its children
      int edge_length; 

      int height;      

      int lablen;

      //-1=I am left, 0=I am root, 1=right   
      int parent_dir;   

      //max supported unit32 in dec, 10 digits max
      char label[11];  
    };

انتاج:

        2
       / \
      /   \
     /     \
    1       3
   / \     / \
  0   7   9   1
 /   / \     / \
2   1   0   8   8
       /
      7

نصائح أخرى

شفرة:

int _print_t(tnode *tree, int is_left, int offset, int depth, char s[20][255])
{
    char b[20];
    int width = 5;

    if (!tree) return 0;

    sprintf(b, "(%03d)", tree->val);

    int left  = _print_t(tree->left,  1, offset,                depth + 1, s);
    int right = _print_t(tree->right, 0, offset + left + width, depth + 1, s);

#ifdef COMPACT
    for (int i = 0; i < width; i++)
        s[depth][offset + left + i] = b[i];

    if (depth && is_left) {

        for (int i = 0; i < width + right; i++)
            s[depth - 1][offset + left + width/2 + i] = '-';

        s[depth - 1][offset + left + width/2] = '.';

    } else if (depth && !is_left) {

        for (int i = 0; i < left + width; i++)
            s[depth - 1][offset - width/2 + i] = '-';

        s[depth - 1][offset + left + width/2] = '.';
    }
#else
    for (int i = 0; i < width; i++)
        s[2 * depth][offset + left + i] = b[i];

    if (depth && is_left) {

        for (int i = 0; i < width + right; i++)
            s[2 * depth - 1][offset + left + width/2 + i] = '-';

        s[2 * depth - 1][offset + left + width/2] = '+';
        s[2 * depth - 1][offset + left + width + right + width/2] = '+';

    } else if (depth && !is_left) {

        for (int i = 0; i < left + width; i++)
            s[2 * depth - 1][offset - width/2 + i] = '-';

        s[2 * depth - 1][offset + left + width/2] = '+';
        s[2 * depth - 1][offset - width/2 - 1] = '+';
    }
#endif

    return left + width + right;
}

void print_t(tnode *tree)
{
    char s[20][255];
    for (int i = 0; i < 20; i++)
        sprintf(s[i], "%80s", " ");

    _print_t(tree, 0, 0, 0, s);

    for (int i = 0; i < 20; i++)
        printf("%s\n", s[i]);
}

انتاج:

                           .----------------------(006)-------.                 
                      .--(001)-------.                   .--(008)--.            
                 .--(-02)       .--(003)-------.       (007)     (009)          
       .-------(-06)          (002)       .--(005)                              
  .--(-08)--.                           (004)                                   
(-09)     (-07)                     

أو

                                                  (006)                         
                           +------------------------+---------+                 
                         (001)                              (008)               
                      +----+---------+                   +----+----+            
                    (-02)          (003)               (007)     (009)          
                 +----+         +----+---------+                                
               (-06)          (002)          (005)                              
       +---------+                        +----+                                
     (-08)                              (004)                                   
  +----+----+                                                                   
(-09)     (-07)                                                       

بعض التلميحات: التباعد بين العقد في نفس العمق ، (على سبيل المثال ، 2 و 4 أو 3 و 8 في مثالك) ، هو وظيفة العمق.

يتكون كل صف مطبوع من جميع العقد بنفس العمق ، مطبوع من العقدة اليسرى إلى العقدة اليمنى.

لذلك تحتاج إلى طريقة ، على سبيل المثال ، ترتيب العقد الخاصة بك في صفائف من الصفوف ، وفقا لعمقها ، من أجل أن يكون الكثير من اليسار.

بدءا من عقدة الجذر ، أ بحث العرض الأول سوف تزور العقد بترتيب العمق واليسار.

يمكن العثور على التباعد بين العقد من خلال إيجاد الحد الأقصى لارتفاع الشجرة ، وذلك باستخدام بعض العرض الثابت لأعمق العقد ، ومضاعفة هذا العرض لكل عمق أقل ، بحيث يكون عرض أي عمق = (1 + الحد الأقصى - المعمق الحالي) * أعمق عرض .

يمنحك هذا الرقم "العرض الأفقي" المطبوع لكل عقدة في أي عمق معين.

العقدة اليسرى أفقيا في وضع في النصف الأيسر من عرض والديه ، عقدة Righ في النصف الأيمن. ستقوم بإدخال فواصل وهمية لأي عقدة لا تحتوي على آباء ؛ هناك طريقة أسهل للقيام بذلك هي التأكد من أن جميع الأوراق في نفس عمق العقدة الأعمق ، مع فارغ كقيمتها. من الواضح أنه يتعين عليك أيضًا التعويض عن عرض القيم ، ربما عن طريق جعل عرض العمق الأكبر على الأقل واسعًا مثل التمثيل العشري ، على ما يبدو) لأكبر عقدة ذات قيمة.

هنا يأخذ واحد آخر عند تنفيذ شجرة في Array:

#include <stdio.h>
#include <math.h>


#define PARENT(i) ((i-1) / 2)
#define NUM_NODES 15
#define LINE_WIDTH 70

int main() {
    int tree[NUM_NODES]={0,1,2,3,4,5,6,7,8,9,1,2,3,4,5};
    int print_pos[NUM_NODES];
    int i, j, k, pos, x=1, level=0;

    print_pos[0] = 0;
    for(i=0,j=1; i<NUM_NODES; i++,j++) {
        pos = print_pos[PARENT(i)] + (i%2?-1:1)*(LINE_WIDTH/(pow(2,level+1))+1);

        for (k=0; k<pos-x; k++) printf("%c",i==0||i%2?' ':'-');
        printf("%d",tree[i]);

        print_pos[i] = x = pos+1;
        if (j==pow(2,level)) {
            printf("\n");
            level++;
            x = 1;
            j = 0;
        }
    }
    return 0;
}

انتاج:

                                   0
                  1-----------------------------------2
          3-----------------4                 5-----------------6
      7---------8       9---------1       2---------3       4---------5

لدي هذا الحل الصغير في C ++ - يمكن تحويله بسهولة إلى ج.

يتطلب حلي بنية بيانات تكميلية لتخزين عمق العقدة الحالية داخل الشجرة (هذا لأنه إذا كنت تعمل مع شجرة غير مكتملة ، فقد لا يكون عمق الشجرة الفرعية المعينة متسقًا مع عمقها في الشجرة الكاملة.)

#include <iostream>
#include <utility>
#include <algorithm>
#include <list>

namespace tree {

template<typename T>
struct node
{
  T data;
  node* l;
  node* r;
  node(T&& data_ = T()) : data(std::move(data_)), l(0), r(0) {}
};

template<typename T>
int max_depth(node<T>* n)
{
  if (!n) return 0;
  return 1 + std::max(max_depth(n->l), max_depth(n->r));
}

template<typename T>
void prt(node<T>* n)
{
  struct node_depth
  {
    node<T>* n;
    int lvl;
    node_depth(node<T>* n_, int lvl_) : n(n_), lvl(lvl_) {}
  };

  int depth = max_depth(n);

  char buf[1024];
  int last_lvl = 0;
  int offset = (1 << depth) - 1;

  // using a queue means we perform a breadth first iteration through the tree
  std::list<node_depth> q;

  q.push_back(node_depth(n, last_lvl));
  while (q.size())
  {
    const node_depth& nd = *q.begin();

    // moving to a new level in the tree, output a new line and calculate new offset
    if (last_lvl != nd.lvl)
    {
      std::cout << "\n";

      last_lvl = nd.lvl;
      offset = (1 << (depth - nd.lvl)) - 1;
    }

    // output <offset><data><offset>
    if (nd.n)
      sprintf(buf, " %*s%d%*s", offset, " ", nd.n->data, offset, " ");
    else
      sprintf(buf, " %*s", offset << 1, " ");
    std::cout << buf;

    if (nd.n)
    {
      q.push_back(node_depth(nd.n->l, last_lvl + 1));
      q.push_back(node_depth(nd.n->r, last_lvl + 1));
    }

    q.pop_front();
  }
  std::cout << "\n";
}

}

int main()
{
  typedef tree::node<int> node;
  node* head = new node();
  head->l    = new node(1);
  head->r    = new node(2);
  head->l->l = new node(3);
  head->l->r = new node(4);
  head->r->l = new node(5);
  head->r->r = new node(6);

  tree::prt(head);

  return 0;
}

يطبع ما يلي:

        0                                                                                                
    1       2                                                                                            
  3   4   5   6                                                                                          

انظر إلى إخراج أمر pstree في Linux. لا ينتج الإخراج في النموذج الدقيق الذي تريده ، ولكن IMHO هو أكثر قابلية للقراءة بهذه الطريقة.

أنا التوصية الثانية لليت. اضطررت إلى القيام بذلك مؤخرًا لطباعة شجرة VAD لعملية Windows واستخدمت لغة DOT (ما عليك سوى طباعة العقد من وظيفة المشي شجرة الثنائية):

http://en.wikipedia.org/wiki/dot_language

على سبيل المثال ، سيحتوي ملف DOT الخاص بك على:

digraph graphname {
     5 -> 3;
     5 -> 8;
     3 -> 4;
     3 -> 2;
}

يمكنك إنشاء الرسم البياني باستخدام dotty.exe أو تحويله إلى PNG باستخدام dot.exe.

شجرة طباعة حلول C ++ بسيطة للغاية في الاتجاه الأفقي:

5
  1
    5
  9
    7
    14

شفرة (Node::print() الوظيفة هي ما يهم):

#include<iostream>

using namespace std;

class Tree;

class Node{
public:
    Node(int val): _val(val){}
    int val(){ return _val; }
    void add(Node *temp)
    {
        if (temp->val() > _val)
        {
            if (_rchild)
                _rchild->add(temp);
            else
            {
                _rchild = temp;
            }
        }
        else
        {
            if (_lchild)
                _lchild->add(temp);
            else
            {
                _lchild = temp;
            }
        }
    }
    void print()
    {
        for (int ix = 0; ix < _level; ++ix) cout << ' ';
        cout << _val << endl;
        ++_level;
        if (_lchild)
        {
            _lchild->print();
            --_level;
        }
        if (_rchild)
        {
            _rchild->print();
            --_level;
        }
    }
private:
    int _val;
    Node *_lchild;      
    Node *_rchild;
    static int _level;      
};

int Node::_level = 0;       

class Tree{
public:
    Tree(): _root(0){}  
    void add(int val)
    {
        Node *temp = new Node(val);
        if (!_root)
            _root = temp;
        else
            _root->add(temp);       
    }
    void print()
    {
        if (!_root)
            return;
        _root->print();             
    }
private:
    Node *_root;    
};

int main()
{
    Tree tree;
    tree.add(5);
    tree.add(9);
    tree.add(1);
    tree.add(7);
    tree.add(5);
    tree.add(14);
    tree.print();
}

أعتقد أنه لا ينبغي عليك رمز ذلك بنفسك ، ولكن إلقاء نظرة على شجرة :: تصور الذي يبدو أنه تطبيق Perl لطيف مع أنماط مختلفة محتملة وأحد الاستخدام/المنفذ أحد الخوارزميات هناك.

I've got a Ruby program that calculates the coordinates where each node in a binary tree should be drawn here: http://hectorcorrea.com/Blog/Drawing-a-Binary-Tree-in-Ruby

This code uses a very basic algorithm to calculate the coordinates and it's not "area efficient" but it's a good start. If you want to the see the code "live" you can test it here: http://binarytree.heroku.com/

مرخصة بموجب: CC-BY-SA مع الإسناد
لا تنتمي إلى StackOverflow
scroll top