سؤال

I am trying to solve this problem in spoj

I need to find the number of rotations of a given string that will make it lexicographically smallest among all the rotations.

For example:

Original: ama

First rotation: maa

Second rotation: aam This is the lexicographically smallest rotation so the answer is 2.

Here's my code:

string s,tmp;
    char ss[100002];
    scanf("%s",ss);
    s=ss;
    tmp=s;
    int i,len=s.size(),ans=0,t=0;
    for(i=0;i<len;i++)
    {
        string x=s.substr(i,len-i)+s.substr(0,i);
        if(x<tmp)
        {
            tmp=x;
            t=ans;
        }
        ans++;
    }

    cout<<t<<endl;

I am getting "Time Limit Exceeded" for this solution. I don't understand what optimizations can be made. How can I increase the speed of my solution?

هل كانت مفيدة؟

المحلول

You can use a modified suffix array. I mean modified because you must not stop on word end.

Here is the code for a similar problem I solved (SA is the suffix array):

//719
//Glass Beads
//Misc;String Matching;Suffix Array;Circular
#include <iostream>
#include <iomanip>
#include <cstring>
#include <string>
#include <cmath>
#define MAX 10050
using namespace std;

int RA[MAX], tempRA[MAX];
int SA[MAX], tempSA[MAX];
int C[MAX];                

void suffix_sort(int n, int k) {
    memset(C, 0, sizeof C);        

    for (int i = 0; i < n; i++)        
        C[RA[(i + k)%n]]++;

    int sum = 0;
    for (int i = 0; i < max(256, n); i++) {                     
        int t = C[i]; 
        C[i] = sum; 
        sum += t;
    }

    for (int i = 0; i < n; i++)        
        tempSA[C[RA[(SA[i] + k)%n]]++] = SA[i];

    memcpy(SA, tempSA, n*sizeof(int));
}

void suffix_array(string &s) {             
    int n = s.size();

    for (int i = 0; i < n; i++) 
        RA[i] = s[i];              

    for (int i = 0; i < n; i++) 
        SA[i] = i;

    for (int k = 1; k < n; k *= 2) {     
        suffix_sort(n, k);
        suffix_sort(n, 0);

        int r = tempRA[SA[0]] = 0;
        for (int i = 1; i < n; i++) {
            int s1 = SA[i], s2 = SA[i-1];
            bool equal = true;
            equal &= RA[s1] == RA[s2];
            equal &= RA[(s1+k)%n] == RA[(s2+k)%n];

            tempRA[SA[i]] = equal ? r : ++r;     
        }

        memcpy(RA, tempRA, n*sizeof(int));
    } 
}

int main() {
    int tt; cin >> tt;
    while(tt--) {
        string s; cin >> s;
        suffix_array(s);
        cout << SA[0]+1 << endl;
   }
}

I took this implementation mostly from this book. There is an easier to write O(n log²n) version, but may not be efficient enough for your case (n=10^5). This version is O(n log n), and it's not the most efficient algorithm. The wikipedia article lists some O(n) algorithms, but I find most of them too complex to write during a programming contest. This O(n log n) is usually enough for most problems.

You can find some slides explaining suffix array concept (from the author of the book I mentioned) here.

نصائح أخرى

I know this comes very late but I stumbled across this from google on my search for an even faster variant of this algorithm. Turns out a good implementation is found at github: https://gist.github.com/MaskRay/8803371

It uses the lyndon factorization. That means it repeatly splits the string into lexicographically decreasing lyndon words. Lyndon word are strings that are (one of) the minimal rotations of themselves. Doing this in a circular way yields the lms of the string as the last found lyndon word.

int lyndon_word(const char *a, int n)
{
  int i = 0, j = 1, k;
  while (j < n) {
    // Invariant: i < j and indices in [0,j) \ i cannot be the first optimum
    for (k = 0; k < n && a[(i+k)%n] == a[(j+k)%n]; k++);
    if (a[(i+k)%n] <= a[(j+k)%n]) {
      // if k < n
      //   foreach p in [j,j+k], s_p > s_{p-(j-i)}
      //   => [j,j+k] are all suboptimal
      //   => indices in [0,j+k+1) \ i are suboptimal
      // else
      //   None of [j,j+k] is the first optimum
      j += k+1;
    } else {
      // foreach p in [i,i+k], s_p > s_{p+(j-i)}
      // => [i,i+k] are all suboptimal
      // => [0,j) and [0,i+k+1) are suboptimal
      // if i+k+1 < j
      //   j < j+1 and indices in [0,j+1) \ j are suboptimal
      // else
      //   i+k+1 < i+k+2 and indices in [0,i+k+2) \ (i+k+1) are suboptimal
      i += k+1;
      if (i < j)
        i = j++;
      else
        j = i+1;
    }
  }
  // j >= n => [0,n) \ i cannot be the first optimum
  return i;
}
مرخصة بموجب: CC-BY-SA مع الإسناد
لا تنتمي إلى StackOverflow
scroll top