我需要一种算法来确定两个图像是否“相似”并识别相似的颜色、亮度、形状等模式。我可能需要一些关于人脑使用哪些参数来“分类”图像的指示。..

我研究过基于 hausdorff 的匹配,但这似乎主要用于匹配变换后的对象和形状图案。

有帮助吗?

解决方案

我做了类似的事情,通过使用将图像分解为签名 小波变换.

我的方法是选择最重要的 n 来自每个变换通道的系数,并记录它们的位置。这是通过根据 abs(power) 对 (power,location) 元组列表进行排序来完成的。相似的图像将具有相似之处,因为它们在相同的位置具有显着的系数。

我发现最好将图像转换为 YUV 格式,这可以有效地允许您对形状(Y 通道)和颜色(UV 通道)的相似性进行加权。

您可以在中找到我对上述内容的实现 马科托里, ,不幸的是我没有做我应该做的那么多工作:-)

另一种方法,我的一些朋友使用过,效果出奇的好,就是简单地将图像大小调整为 4x4 像素,然后存储您的签名。可以通过计算 2 个图像的相似程度来评分 曼哈顿距离 在 2 个图像之间,使用相应的像素。我不知道他们如何执行调整大小的详细信息,因此您可能必须使用可用于该任务的各种算法才能找到合适的算法。

其他提示

pH值 您可能会感兴趣。

感知哈希音频、视频或图像文件的指纹,在数学上基于其中包含的音频或视觉内容。与加密哈希函数不同,加密哈希函数依赖于输入的微小变化导致输出发生剧烈变化的雪崩效应,如果输入在视觉或听觉上相似,感知哈希就会彼此“接近”。

我用过 重新检测不同图像中的同一对象。它确实很强大,但相当复杂,而且可能有点矫枉过正。如果图像应该非常相似,那么基于两个图像之间差异的一些简单参数可以告诉您很多信息。一些提示:

  • 标准化图像,即通过计算两个图像的平均亮度并根据比例缩小最亮的图像(以避免最高级别的剪切),使两个图像的平均亮度相同,特别是如果您对形状比颜色更感兴趣的话。
  • 每个通道标准化图像的色差总和。
  • 找到图像中的边缘并测量两个图像中边缘像素之间的距离。(对于形状)
  • 将图像划分为一组离散区域并比较每个区域的平均颜色。
  • 在一个(或一组)级别对图像进行阈值计算,并计算所得黑白图像不同的像素数。

你可以使用 感知图像差异

它是一个命令行实用程序,使用感知指标来比较两个图像。也就是说,它使用人类视觉系统的计算模型来确定两个图像在视觉上是否不同,因此忽略像素的微小变化。此外,它还大大减少了因随机数生成、操作系统或机器架构差异而导致的误报数量。

这是一个难题!这取决于您需要的准确度,也取决于您正在处理的图像类型。您可以使用直方图来比较颜色,但这显然没有考虑图像中这些颜色的空间分布(即形状)。边缘检测后进行某种分割(即挑选形状)可以提供与另一图像匹配的模式。您可以使用共生矩阵来比较纹理,方法是将图像视为像素值矩阵,然后比较这些矩阵。有一些关于图像匹配和机器视觉的好书——在亚马逊上搜索就能找到一些。

希望这可以帮助!

我的实验室也需要解决这个问题,我们使用了 Tensorflow。这是一个 完整的应用程序 可视化图像相似度的实现。

有关矢量化图像以进行相似性计算的教程,请查看 这一页. 。这是 Python(再次,请参阅帖子以了解完整的工作流程):

from __future__ import absolute_import, division, print_function

"""

This is a modification of the classify_images.py
script in Tensorflow. The original script produces
string labels for input images (e.g. you input a picture
of a cat and the script returns the string "cat"); this
modification reads in a directory of images and 
generates a vector representation of the image using
the penultimate layer of neural network weights.

Usage: python classify_images.py "../image_dir/*.jpg"

"""

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Simple image classification with Inception.

Run image classification with Inception trained on ImageNet 2012 Challenge data
set.

This program creates a graph from a saved GraphDef protocol buffer,
and runs inference on an input JPEG image. It outputs human readable
strings of the top 5 predictions along with their probabilities.

Change the --image_file argument to any jpg image to compute a
classification of that image.

Please see the tutorial and website for a detailed description of how
to use this script to perform image recognition.

https://tensorflow.org/tutorials/image_recognition/
"""

import os.path
import re
import sys
import tarfile
import glob
import json
import psutil
from collections import defaultdict
import numpy as np
from six.moves import urllib
import tensorflow as tf

FLAGS = tf.app.flags.FLAGS

# classify_image_graph_def.pb:
#   Binary representation of the GraphDef protocol buffer.
# imagenet_synset_to_human_label_map.txt:
#   Map from synset ID to a human readable string.
# imagenet_2012_challenge_label_map_proto.pbtxt:
#   Text representation of a protocol buffer mapping a label to synset ID.
tf.app.flags.DEFINE_string(
    'model_dir', '/tmp/imagenet',
    """Path to classify_image_graph_def.pb, """
    """imagenet_synset_to_human_label_map.txt, and """
    """imagenet_2012_challenge_label_map_proto.pbtxt.""")
tf.app.flags.DEFINE_string('image_file', '',
                           """Absolute path to image file.""")
tf.app.flags.DEFINE_integer('num_top_predictions', 5,
                            """Display this many predictions.""")

# pylint: disable=line-too-long
DATA_URL = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz'
# pylint: enable=line-too-long


class NodeLookup(object):
  """Converts integer node ID's to human readable labels."""

  def __init__(self,
               label_lookup_path=None,
               uid_lookup_path=None):
    if not label_lookup_path:
      label_lookup_path = os.path.join(
          FLAGS.model_dir, 'imagenet_2012_challenge_label_map_proto.pbtxt')
    if not uid_lookup_path:
      uid_lookup_path = os.path.join(
          FLAGS.model_dir, 'imagenet_synset_to_human_label_map.txt')
    self.node_lookup = self.load(label_lookup_path, uid_lookup_path)

  def load(self, label_lookup_path, uid_lookup_path):
    """Loads a human readable English name for each softmax node.

    Args:
      label_lookup_path: string UID to integer node ID.
      uid_lookup_path: string UID to human-readable string.

    Returns:
      dict from integer node ID to human-readable string.
    """
    if not tf.gfile.Exists(uid_lookup_path):
      tf.logging.fatal('File does not exist %s', uid_lookup_path)
    if not tf.gfile.Exists(label_lookup_path):
      tf.logging.fatal('File does not exist %s', label_lookup_path)

    # Loads mapping from string UID to human-readable string
    proto_as_ascii_lines = tf.gfile.GFile(uid_lookup_path).readlines()
    uid_to_human = {}
    p = re.compile(r'[n\d]*[ \S,]*')
    for line in proto_as_ascii_lines:
      parsed_items = p.findall(line)
      uid = parsed_items[0]
      human_string = parsed_items[2]
      uid_to_human[uid] = human_string

    # Loads mapping from string UID to integer node ID.
    node_id_to_uid = {}
    proto_as_ascii = tf.gfile.GFile(label_lookup_path).readlines()
    for line in proto_as_ascii:
      if line.startswith('  target_class:'):
        target_class = int(line.split(': ')[1])
      if line.startswith('  target_class_string:'):
        target_class_string = line.split(': ')[1]
        node_id_to_uid[target_class] = target_class_string[1:-2]

    # Loads the final mapping of integer node ID to human-readable string
    node_id_to_name = {}
    for key, val in node_id_to_uid.items():
      if val not in uid_to_human:
        tf.logging.fatal('Failed to locate: %s', val)
      name = uid_to_human[val]
      node_id_to_name[key] = name

    return node_id_to_name

  def id_to_string(self, node_id):
    if node_id not in self.node_lookup:
      return ''
    return self.node_lookup[node_id]


def create_graph():
  """Creates a graph from saved GraphDef file and returns a saver."""
  # Creates graph from saved graph_def.pb.
  with tf.gfile.FastGFile(os.path.join(
      FLAGS.model_dir, 'classify_image_graph_def.pb'), 'rb') as f:
    graph_def = tf.GraphDef()
    graph_def.ParseFromString(f.read())
    _ = tf.import_graph_def(graph_def, name='')


def run_inference_on_images(image_list, output_dir):
  """Runs inference on an image list.

  Args:
    image_list: a list of images.
    output_dir: the directory in which image vectors will be saved

  Returns:
    image_to_labels: a dictionary with image file keys and predicted
      text label values
  """
  image_to_labels = defaultdict(list)

  create_graph()

  with tf.Session() as sess:
    # Some useful tensors:
    # 'softmax:0': A tensor containing the normalized prediction across
    #   1000 labels.
    # 'pool_3:0': A tensor containing the next-to-last layer containing 2048
    #   float description of the image.
    # 'DecodeJpeg/contents:0': A tensor containing a string providing JPEG
    #   encoding of the image.
    # Runs the softmax tensor by feeding the image_data as input to the graph.
    softmax_tensor = sess.graph.get_tensor_by_name('softmax:0')

    for image_index, image in enumerate(image_list):
      try:
        print("parsing", image_index, image, "\n")
        if not tf.gfile.Exists(image):
          tf.logging.fatal('File does not exist %s', image)

        with tf.gfile.FastGFile(image, 'rb') as f:
          image_data =  f.read()

          predictions = sess.run(softmax_tensor,
                          {'DecodeJpeg/contents:0': image_data})

          predictions = np.squeeze(predictions)

          ###
          # Get penultimate layer weights
          ###

          feature_tensor = sess.graph.get_tensor_by_name('pool_3:0')
          feature_set = sess.run(feature_tensor,
                          {'DecodeJpeg/contents:0': image_data})
          feature_vector = np.squeeze(feature_set)        
          outfile_name = os.path.basename(image) + ".npz"
          out_path = os.path.join(output_dir, outfile_name)
          np.savetxt(out_path, feature_vector, delimiter=',')

          # Creates node ID --> English string lookup.
          node_lookup = NodeLookup()

          top_k = predictions.argsort()[-FLAGS.num_top_predictions:][::-1]
          for node_id in top_k:
            human_string = node_lookup.id_to_string(node_id)
            score = predictions[node_id]
            print("results for", image)
            print('%s (score = %.5f)' % (human_string, score))
            print("\n")

            image_to_labels[image].append(
              {
                "labels": human_string,
                "score": str(score)
              }
            )

        # close the open file handlers
        proc = psutil.Process()
        open_files = proc.open_files()

        for open_file in open_files:
          file_handler = getattr(open_file, "fd")
          os.close(file_handler)
      except:
        print('could not process image index',image_index,'image', image)

  return image_to_labels


def maybe_download_and_extract():
  """Download and extract model tar file."""
  dest_directory = FLAGS.model_dir
  if not os.path.exists(dest_directory):
    os.makedirs(dest_directory)
  filename = DATA_URL.split('/')[-1]
  filepath = os.path.join(dest_directory, filename)
  if not os.path.exists(filepath):
    def _progress(count, block_size, total_size):
      sys.stdout.write('\r>> Downloading %s %.1f%%' % (
          filename, float(count * block_size) / float(total_size) * 100.0))
      sys.stdout.flush()
    filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress)
    print()
    statinfo = os.stat(filepath)
    print('Succesfully downloaded', filename, statinfo.st_size, 'bytes.')
  tarfile.open(filepath, 'r:gz').extractall(dest_directory)


def main(_):
  maybe_download_and_extract()
  if len(sys.argv) < 2:
    print("please provide a glob path to one or more images, e.g.")
    print("python classify_image_modified.py '../cats/*.jpg'")
    sys.exit()

  else:
    output_dir = "image_vectors"
    if not os.path.exists(output_dir):
      os.makedirs(output_dir)

    images = glob.glob(sys.argv[1])
    image_to_labels = run_inference_on_images(images, output_dir)

    with open("image_to_labels.json", "w") as img_to_labels_out:
      json.dump(image_to_labels, img_to_labels_out)

    print("all done")
if __name__ == '__main__':
  tf.app.run()

一些图像识别软件解决方案实际上并不是纯粹基于算法,​​而是利用了 神经网络 相反的概念。查看 http://en.wikipedia.org/wiki/Artificial_neural_network 即 NeuronDotNet,其中还包括有趣的样本: http://neurondotnet.freehostia.com/index.html

有使用 Kohonen 神经网络/自组织映射的相关研究

学术性较高的系统(Google for PicSOM)或学术性较低的系统
( http://www. Generation5.org/content/2004/aiSomPic.asp (可能不适合所有工作环境))存在演示文稿。

计算大幅缩小版本的像素颜色值差异的平方和(例如:6x6 像素)效果很好。相同的图像产生 0,相似的图像产生较小的数字,不同的图像产生较大的数字。

上面其他人首先闯入 YUV 的想法听起来很有趣 - 虽然我的想法很有效,但我希望我的图像被计算为“不同”,以便它产生正确的结果 - 即使从色盲观察者的角度来看也是如此。

这听起来像是视力问题。您可能想研究自适应增强以及 Burns 线提取算法。这两个概念应该有助于解决这个问题。如果您是视觉算法的新手,边缘检测是一个更简单的起点,因为它解释了基础知识。

就分类参数而言:

  • 调色板和位置(梯度计算、颜色直方图)
  • 包含的形状(Ada.增强/训练以检测形状)

根据您需要的结果准确程度,您可以简单地将图像分解为 n x n 像素块并进行分析。如果在第一个块中得到不同的结果,则无法停止处理,从而导致一些性能改进。

例如,为了分析方块,您可以获取颜色值的总和。

您可以在两个图像之间执行某种块匹配运动估计,并测量残差和运动矢量成本的总和(就像在视频编码器中所做的那样)。这将补偿运动;对于奖励积分,进行仿射变换运动估计(补偿缩放和拉伸等)。您还可以进行重叠块或光流。

作为第一步,您可以尝试使用颜色直方图。但是,您确实需要缩小问题范围。通用图像匹配是一个非常困难的问题。

我发现这篇文章非常有助于解释它的工作原理:

http://www.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html

抱歉迟到才加入讨论。

我们甚至可以使用 ORB 方法来检测两幅图像之间的相似特征点。以下链接给出了 ORB 在 python 中的直接实现

http://scikit-image.org/docs/dev/auto_examples/plot_orb.html

甚至 openCV 也直接实现了 ORB。如果您想了解更多信息,请关注下面给出的研究文章。

https://www.researchgate.net/publication/292157133_Image_Matching_Using_SIFT_SURF_BRIEF_and_ORB_Performance_Comparison_for_Distorted_Images

在其他线程中对此有一些很好的答案,但我想知道涉及光谱分析的东西是否有效?即,将图像分解为相位和幅度信息并进行比较。这可以避免一些裁剪、变换和强度差异的问题。不管怎样,这只是我的猜测,因为这似乎是一个有趣的问题。如果你搜索过 http://scholar.google.com 我相信您可以就此发表几篇论文。

许可以下: CC-BY-SA归因
不隶属于 StackOverflow
scroll top