Frage

Gibt es eine Möglichkeit, einfach die DCT-Koeffizienten zu extrahieren (und Quantisierungsparameter) von codierten Bildern und Video? Jede Decoder-Software muss mit ihnen sein, um Block-DCT-codierten Bildern und Video zu dekodieren. Also ich ziemlich sicher, dass der Decoder bin weiß, was sie sind. Gibt es eine Möglichkeit, sie zu freizulegen, wem den Decoder ist mit?

Ich bin Implementierung einiger Videoqualität Bewertungsalgorithmen, die direkt im DCT-Bereich arbeiten. Derzeit nutzt die Mehrheit meines Code OpenCV, so wäre es toll, wenn jemand eine Lösung weiß, dass Framework. Ich bin nicht dagegen andere Bibliotheken (vielleicht libjpeg, aber das scheint nur für Standbilder zu sein), aber mein Hauptanliegen ist es, so wenig formatspezifische Arbeit wie möglich zu tun (ich will nicht das Rad neu zu erfinden und schreiben mein eigener Decoder). Ich möchte jedes Video / Bild öffnen können (H.264, MPEG, JPEG, etc.), dass OpenCV öffnen kann, und wenn es der Block DCT-codiert, um die DCT-Koeffizienten zu erhalten.

Im schlimmsten Fall, ich weiß, dass ich meine eigene Code-Block DCT schreiben kann, die dekomprimiert Bilder / Bilder durch sie laufen und dann würde ich in der DCT-Domäne zurück. Das ist kaum eine elegante Lösung, und ich hoffe, ich kann es besser machen.

Zur Zeit benutze ich das ziemlich häufig OpenCV Textvorschlag zu öffnen Bilder:

IplImage *image = cvLoadImage(filename);
// Run quality assessment metric

Der Code, den ich für das Video bin mit ist ebenso trivial:

CvCapture *capture = cvCaptureFromAVI(filename);    
while (cvGrabFrame(capture))
{
    IplImage *frame = cvRetrieveFrame(capture);
    // Run quality assessment metric on frame
}
cvReleaseCapture(&capture);

In beiden Fällen bekomme ich eine 3-Kanal IplImage in BGR-Format. Gibt es eine Möglichkeit, wie auch die DCT-Koeffizienten erhalten kann?

War es hilfreich?

Lösung

Nun, ich habe ein bisschen zu lesen und meine ursprüngliche Frage scheint eine Instanz von Wunschdenken zu sein.

Im Grunde ist es nicht möglich, die DCT-Koeffizienten von H.264 Video-Frames aus dem einfachen Grunde zu bekommen, dass H.264 nicht verwendet DCT . Es verwendet eine andere Transformation (integer-Transformation). Als nächstes werden die Koeffizienten für diese Transformation nicht notwendigerweise auf einer Frame-by-Frame-Basis ändern - H.264 ist intelligenter denn es Frames in Scheiben aufspaltet. Es sollte möglich sein, diese Koeffizienten durch einen speziellen Decoder zu bekommen, aber ich bezweifle, OpenCV es für den Benutzer bereitstellt.

Für JPEG, sind die Dinge etwas positiver. Wie ich vermutete, libjpeg Exposes für Sie die DCT-Koeffizienten. Ich schrieb eine kleine Anwendung zu zeigen, dass es (Quelle am Ende) arbeitet. Es macht ein neues Bild den DC-Begriff aus jedem Block verwendet wird. Da das DC-Term zu dem Block Durchschnitt gleich ist (nach entsprechender Skalierung) werden die DC Bilder Versionen des Eingangs JPEG-Bildes heruntergetasteten.

EDIT: feste Skalierung in Quelle

Originalbild (512 x 512):

JPEG-Bild

DC Bilder (64x64): Luma Cr Cb RGB

DC Luma DC Cb DC Cr DC RGB

Quelle (C ++):

#include <stdio.h>
#include <assert.h>

#include <cv.h>    
#include <highgui.h>

extern "C"
{
#include "jpeglib.h"
#include <setjmp.h>
}

#define DEBUG 0
#define OUTPUT_IMAGES 1

/*
 * Extract the DC terms from the specified component.
 */
IplImage *
extract_dc(j_decompress_ptr cinfo, jvirt_barray_ptr *coeffs, int ci)
{
    jpeg_component_info *ci_ptr = &cinfo->comp_info[ci];
    CvSize size = cvSize(ci_ptr->width_in_blocks, ci_ptr->height_in_blocks);
    IplImage *dc = cvCreateImage(size, IPL_DEPTH_8U, 1);
    assert(dc != NULL);

    JQUANT_TBL *tbl = ci_ptr->quant_table;
    UINT16 dc_quant = tbl->quantval[0];

#if DEBUG
    printf("DCT method: %x\n", cinfo->dct_method);
    printf
    (
        "component: %d (%d x %d blocks) sampling: (%d x %d)\n", 
        ci, 
        ci_ptr->width_in_blocks, 
        ci_ptr->height_in_blocks,
        ci_ptr->h_samp_factor, 
        ci_ptr->v_samp_factor
    );

    printf("quantization table: %d\n", ci);
    for (int i = 0; i < DCTSIZE2; ++i)
    {
        printf("% 4d ", (int)(tbl->quantval[i]));
        if ((i + 1) % 8 == 0)
            printf("\n");
    }

    printf("raw DC coefficients:\n");
#endif

    JBLOCKARRAY buf =
    (cinfo->mem->access_virt_barray)
    (
        (j_common_ptr)cinfo,
        coeffs[ci],
        0,
        ci_ptr->v_samp_factor,
        FALSE
    );
    for (int sf = 0; (JDIMENSION)sf < ci_ptr->height_in_blocks; ++sf)
    {
        for (JDIMENSION b = 0; b < ci_ptr->width_in_blocks; ++b)
        {
            int intensity = 0;

            intensity = buf[sf][b][0]*dc_quant/DCTSIZE + 128;
            intensity = MAX(0,   intensity);
            intensity = MIN(255, intensity);

            cvSet2D(dc, sf, (int)b, cvScalar(intensity));

#if DEBUG
            printf("% 2d ", buf[sf][b][0]);                        
#endif
        }
#if DEBUG
        printf("\n");
#endif
    }

    return dc;

}

IplImage *upscale_chroma(IplImage *quarter, CvSize full_size)
{
    IplImage *full = cvCreateImage(full_size, IPL_DEPTH_8U, 1);
    cvResize(quarter, full, CV_INTER_NN);
    return full;
}

GLOBAL(int)
read_JPEG_file (char * filename, IplImage **dc)
{
  /* This struct contains the JPEG decompression parameters and pointers to
   * working space (which is allocated as needed by the JPEG library).
   */
  struct jpeg_decompress_struct cinfo;

  struct jpeg_error_mgr jerr;
  /* More stuff */
  FILE * infile;        /* source file */

  /* In this example we want to open the input file before doing anything else,
   * so that the setjmp() error recovery below can assume the file is open.
   * VERY IMPORTANT: use "b" option to fopen() if you are on a machine that
   * requires it in order to read binary files.
   */

  if ((infile = fopen(filename, "rb")) == NULL) {
    fprintf(stderr, "can't open %s\n", filename);
    return 0;
  }

  /* Step 1: allocate and initialize JPEG decompression object */

  cinfo.err = jpeg_std_error(&jerr);

  /* Now we can initialize the JPEG decompression object. */
  jpeg_create_decompress(&cinfo);

  /* Step 2: specify data source (eg, a file) */

  jpeg_stdio_src(&cinfo, infile);

  /* Step 3: read file parameters with jpeg_read_header() */

  (void) jpeg_read_header(&cinfo, TRUE);
  /* We can ignore the return value from jpeg_read_header since
   *   (a) suspension is not possible with the stdio data source, and
   *   (b) we passed TRUE to reject a tables-only JPEG file as an error.
   * See libjpeg.txt for more info.
   */

  /* Step 4: set parameters for decompression */

  /* In this example, we don't need to change any of the defaults set by
   * jpeg_read_header(), so we do nothing here.
   */

  jvirt_barray_ptr *coeffs = jpeg_read_coefficients(&cinfo);

  IplImage *y    = extract_dc(&cinfo, coeffs, 0);
  IplImage *cb_q = extract_dc(&cinfo, coeffs, 1);
  IplImage *cr_q = extract_dc(&cinfo, coeffs, 2);

  IplImage *cb = upscale_chroma(cb_q, cvGetSize(y));
  IplImage *cr = upscale_chroma(cr_q, cvGetSize(y));

  cvReleaseImage(&cb_q);
  cvReleaseImage(&cr_q);

#if OUTPUT_IMAGES
  cvSaveImage("y.png",   y);
  cvSaveImage("cb.png", cb);
  cvSaveImage("cr.png", cr);
#endif

  *dc = cvCreateImage(cvGetSize(y), IPL_DEPTH_8U, 3);
  assert(dc != NULL);

  cvMerge(y, cr, cb, NULL, *dc);

  cvReleaseImage(&y);
  cvReleaseImage(&cb);
  cvReleaseImage(&cr);

  /* Step 7: Finish decompression */

  (void) jpeg_finish_decompress(&cinfo);
  /* We can ignore the return value since suspension is not possible
   * with the stdio data source.
   */

  /* Step 8: Release JPEG decompression object */

  /* This is an important step since it will release a good deal of memory. */
  jpeg_destroy_decompress(&cinfo);

  fclose(infile);

  return 1;
}

int 
main(int argc, char **argv)
{
    int ret = 0;
    if (argc != 2)
    {
        fprintf(stderr, "usage: %s filename.jpg\n", argv[0]);
        return 1;
    }
    IplImage *dc = NULL;
    ret = read_JPEG_file(argv[1], &dc);
    assert(dc != NULL);

    IplImage *rgb = cvCreateImage(cvGetSize(dc), IPL_DEPTH_8U, 3);
    cvCvtColor(dc, rgb, CV_YCrCb2RGB);

#if OUTPUT_IMAGES
    cvSaveImage("rgb.png", rgb);
#else
    cvNamedWindow("DC", CV_WINDOW_AUTOSIZE); 
    cvShowImage("DC", rgb);
    cvWaitKey(0);
#endif

    cvReleaseImage(&dc);
    cvReleaseImage(&rgb);

    return 0;
}

Andere Tipps

Sie können mit libjpeg dct Daten Ihrer JPEG-Datei zu extrahieren, aber für h.264 Video-Datei, kann ich nicht Open Source-Code finden, dass give Sie dct Daten (actully Integer dct Daten). Sie können jedoch wie Open-Source-Software verwenden h.264 JM , JSVM oder x264 . In dieser beide Quelldatei müssen Sie ihre spezifische Funktion, dass nutzen dct Funktion finden, und ändern Sie es auf Ihren Wunsch Form, Ihre Ausgabe dct Daten zu erhalten.

Für Bild: Verwenden Sie den folgenden Code, und nach read_jpeg_file( infilename, v, quant_tbl ), v und quant_tbl wird jeweils dct data und quantization table Ihrer JPEG-Bild haben.

Ich habe QVector meine Ausgangsdaten zu speichern, ändern Sie auf Ihre bevorzugte c ++ Array-Liste.


#include <iostream>
#include <stdio.h>
#include <jpeglib.h>
#include <stdlib.h>
#include <setjmp.h>
#include <fstream>

#include <QVector>

int read_jpeg_file( char *filename, QVector<QVector<int> > &dct_coeff, QVector<unsigned short> &quant_tbl)
{
    struct jpeg_decompress_struct cinfo;
    struct jpeg_error_mgr jerr;
    FILE * infile;

    if ((infile = fopen(filename, "rb")) == NULL) {
      fprintf(stderr, "can't open %s\n", filename);
      return 0;
    }

    cinfo.err = jpeg_std_error(&jerr);
    jpeg_create_decompress(&cinfo);
    jpeg_stdio_src(&cinfo, infile);
    (void) jpeg_read_header(&cinfo, TRUE);

    jvirt_barray_ptr *coeffs_array = jpeg_read_coefficients(&cinfo);
    for (int ci = 0; ci < 1; ci++)
    {
        JBLOCKARRAY buffer_one;
        JCOEFPTR blockptr_one;
        jpeg_component_info* compptr_one;
        compptr_one = cinfo.comp_info + ci;

        for (int by = 0; by < compptr_one->height_in_blocks; by++)
        {
            buffer_one = (cinfo.mem->access_virt_barray)((j_common_ptr)&cinfo, coeffs_array[ci], by, (JDIMENSION)1, FALSE);
            for (int bx = 0; bx < compptr_one->width_in_blocks; bx++)
            {
                blockptr_one = buffer_one[0][bx];
                QVector<int> tmp;
                for (int bi = 0; bi < 64; bi++)
                {
                    tmp.append(blockptr_one[bi]);
                }
                dct_coeff.push_back(tmp);
            }
        }
    }


    // coantization table
    j_decompress_ptr dec_cinfo  = (j_decompress_ptr) &cinfo;
    jpeg_component_info *ci_ptr = &dec_cinfo->comp_info[0];
    JQUANT_TBL *tbl = ci_ptr->quant_table;

    for(int ci =0 ; ci < 64; ci++){
        quant_tbl.append(tbl->quantval[ci]);
    }

    return 1;
}

int main()
{
    QVector<QVector<int> > v;
    QVector<unsigned short> quant_tbl;
    char *infilename = "your_image.jpg";

    std::ofstream out;
    out.open("out_dct.txt");


    if( read_jpeg_file( infilename, v, quant_tbl ) > 0 ){

        for(int j = 0; j < v.size(); j++ ){
                for (int i = 0; i < v[0].size(); ++i){
                    out << v[j][i] << "\t";
            }
            out << "---------------" << std::endl;
        }

        out << "\n\n\n" << std::string(10,'-') << std::endl;
        out << "\nQauntization Table:" << std::endl;
        for(int i = 0; i < quant_tbl.size(); i++ ){
            out << quant_tbl[i] << "\t";
        }
    }
    else{
        std::cout << "Can not read, Returned With Error";
        return -1;
    }

    out.close();

return 0;
}
Lizenziert unter: CC-BY-SA mit Zuschreibung
Nicht verbunden mit StackOverflow
scroll top