Question

I'm having a bit of an odd problem. I'm trying to render some data with OpenGL on my Windows system. I found a set of tutorials at opengl-tutorial.org which were written for OpenGL 3.3. As my laptop (where I do a great deal of developing) only supports OpenGL 2.1, I proceeded to download the OpenGL 2.1 port of the tutorial. I messed around with it a bit, adding features and refactoring it for scalability, but noticed something odd. Whenever I rendered my data with Vertex Buffer Objects, I got a rather incorrect representation of my data. This is shown below. http://www.majhost.com/gallery/DagonEcelstraun/Others/HelpNeeded/badrender.png However, when I specify my data using glVertex3fv and such, I get a much nicer result, again shown below. http://www.majhost.com/gallery/DagonEcelstraun/Others/HelpNeeded/goodrender.png The problem occurs both on my Windows 8.1 laptop with Intel i3 integrated graphics and on my Windows 7 desktop with its nVidia GTX 660, so it's not a hardware problem. Does anyone know what may be the issue here?

Loading mesh data:

const aiScene *scene = aiImportFile( sName.c_str(), 
aiProcessPreset_TargetRealtime_MaxQuality | aiProcess_FlipUVs );
const aiMesh *mesh = scene->mMeshes[0];
for( int i = 0; i < mesh->mNumVertices; i++ ) {
    meshData.push_back( mesh->mVertices[i][0] );
    meshData.push_back( mesh->mVertices[i][1] );
    meshData.push_back( mesh->mVertices[i][2] );

    meshData.push_back( mesh->mNormals[i][0] );
    meshData.push_back( mesh->mNormals[i][1] );
    meshData.push_back( mesh->mNormals[i][2] );

    meshData.push_back( mesh->mTextureCoords[0][i][0] );
    meshData.push_back( mesh->mTextureCoords[0][i][1] );
    meshData.push_back( 0 );

    meshData.push_back( mesh->mTangents[i][0] );
    meshData.push_back( mesh->mTangents[i][1] );
    meshData.push_back( mesh->mTangents[i][2] );
}

for( int i = 0; i < mesh->mNumFaces; i++ ) {
    for( int j = 0; j < 3; j++ ) {
        indices.push_back( mesh->mFaces[i].mIndices[j] );
    }
}

Sending data to the graphics card for the first time (called right after previous code):

glGenBuffers( 1, &glVertData );
glBindBuffer( GL_ARRAY_BUFFER, glVertData );
glBufferData( GL_ARRAY_BUFFER, meshData.size() * sizeof( GLfloat ), &meshData[0], GL_STATIC_DRAW );

// Generate a buffer for the indices as well
glGenBuffers( 1, &glIndexes );
glBindBuffer( GL_ELEMENT_ARRAY_BUFFER, glIndexes );
glBufferData( GL_ELEMENT_ARRAY_BUFFER, indices.size() * sizeof(unsigned short), &indices[0], GL_STATIC_DRAW );

Rendering the mesh:

//Tell the shader to use our data
//bindVerts, bindUvs, bindNorms, and bindTangents refer to attribute variables in my shader
//vertexPosition_modelspace, vertexUV, vertexNormal_modelspace, and vertexTangent_modelspace, respectively.
this->verts = bindVerts;
this->uvs = bindUvs;
this->norms = bindNorms;
this->tangents = bindTangents;
glEnableVertexAttribArray( verts );
glEnableVertexAttribArray( uvs );
glEnableVertexAttribArray( norms );
glEnableVertexAttribArray( tangents );

//Specify how the graphics card should decode our data
// 1rst attribute buffer : vertices
glBindBuffer( GL_ARRAY_BUFFER, glVertData );
glVertexAttribPointer( verts, 3, GL_FLOAT, GL_FALSE, 12, (void*) 0 );

// 2nd attribute buffer : normals
glVertexAttribPointer( norms, 3, GL_FLOAT, GL_FALSE, 12, (void*) 3 ); 

//3rd attribute buffer : UVs
glVertexAttribPointer( uvs, 3, GL_FLOAT, GL_FALSE, 12, (void*) 6 );

//4th attribute buffer: tangents
glVertexAttribPointer( tangents, 3, GL_FLOAT, GL_FALSE, 12, (void*) 9 );

// Index buffer
glBindBuffer( GL_ELEMENT_ARRAY_BUFFER, glIndexes );

//rendering the mesh with VBOs:
glDrawElements( GL_LINES, indices.size(), GL_UNSIGNED_SHORT, (void*) 0 );

//specifying the vertex data individually:
glBegin( GL_TRIANGLES );
int ind;
for( int i = 0; i < indices.size(); i++ ) {
    ind = indices[i] * 12;
    glNormal3fv( &meshData[ind + 3] );
    glTexCoord2fv( &meshData[ind + 6] );
    glVertex3fv( &meshData[ind] );
}
glEnd();

//clean up after the render
glDisableVertexAttribArray( verts );
glDisableVertexAttribArray( uvs );
glDisableVertexAttribArray( norms );
glDisableVertexAttribArray( tangents );

My vertex shader:

#version 130

// Input vertex data, different for all executions of this shader.
//it doesn't work, so we'll just get rid of it
attribute vec3 vertexPosition_modelspace;
attribute vec3 vertexUV;
attribute vec3 vertexNormal_modelspace;
attribute vec3 vertexTangent_modelspace;

// Output data ; will be interpolated for each fragment.
out vec2 UV;
out vec3 Position_worldspace;
out vec3 Normal_cameraspace;
out vec3 EyeDirection_cameraspace;
out vec3 LightDirection_cameraspace;
out vec4 ShadowCoord;

// Values that stay constant for the whole mesh.
uniform mat4 MVP;
uniform mat4 V;
uniform mat4 M;
uniform vec3 LightInvDirection_worldspace;
uniform mat4 DepthBiasMVP;
uniform sampler2D normalMap;

attribute vec3 vTangent;

void main() {
    // Output position of the vertex, in clip space : MVP * position
    gl_Position =  MVP * vec4( vertexPosition_modelspace, 1 );

    ShadowCoord = DepthBiasMVP *  vec4( vertexPosition_modelspace, 0 );

    // Position of the vertex, in worldspace : M * position
    Position_worldspace = ( M * vec4( vertexPosition_modelspace, 0 ) ).xyz;

    // Vector that goes from the vertex to the camera, in camera space.
    // In camera space, the camera is at the origin (0,0,0).
    EyeDirection_cameraspace = vec3( 0, 0, 0 ) - ( V * M *  vec4(         vertexPosition_modelspace, 0 ) ).xyz;

    // Vector that goes from the vertex to the light, in camera space
    LightDirection_cameraspace = ( V * vec4( LightInvDirection_worldspace, 0 ) ).xyz;

    // UV of the vertex. No special space for this one.
    UV = vertexUV.st;

    // Normal of the the vertex, in camera space
    // Only correct if ModelMatrix does not scale the model ! Use its inverse transpose if not.
    Normal_cameraspace = ( V * M * vec4( vertexNormal_modelspace.xyz, 0 ) ).xyz; 
}

Fragment shader:

#version 130

// Interpolated values from the vertex shaders
in vec2 UV;
in vec3 Position_worldspace;
in vec3 Normal_cameraspace;
in vec3 EyeDirection_cameraspace;
in vec3 LightDirection_cameraspace;
in vec4 ShadowCoord;

out vec4 fragColor;

// Values that stay constant for the whole mesh.
uniform sampler2D diffuse;
uniform mat4 MV;
uniform vec3 LightPosition_worldspace;
uniform sampler2D shadowMap;
//uniform int shadowLevel;  //0 is no shadow, 1 is hard shadows, 2 is soft shadows, 3 is PCSS

// Returns a random number based on a vec3 and an int.
float random( vec3 seed, int i ) {
    vec4 seed4 = vec4( seed, i );           
    float dot_product = dot( seed4, vec4( 12.9898, 78.233, 45.164, 94.673 ) );
    return fract( sin( dot_product ) * 43758.5453 );
}

int mod( int a, int b ) {
    return a - (a / b);
}

void main() {
    int shadowLevel = 1;    //let's just do hard shadows
    // Light emission properties
    vec3 LightColor = vec3( 1, 1, 1 );
    float LightPower = 1.0f;

    // Material properties
    vec3 MaterialDiffuseColor = texture( diffuse, UV ).rgb;
    vec3 MaterialAmbientColor = vec3( 0.1, 0.1, 0.1 ) * MaterialDiffuseColor;
    vec3 MaterialSpecularColor = vec3( 0.3, 0.3, 0.3 );

    vec3 n = normalize( Normal_cameraspace );
    vec3 l = normalize( LightDirection_cameraspace );
    float cosTheta = clamp( dot( n, l ), 0.2, 1 );

    // Eye vector (towards the camera)
    vec3 E = normalize( EyeDirection_cameraspace );
    // Direction in which the triangle reflects the light
    vec3 R = reflect( -l, n );
    // Cosine of the angle between the Eye vector and the Reflect vector,
    // clamped to 0
    //  - Looking into the reflection -> 1
    //  - Looking elsewhere -> < 1
    float cosAlpha = clamp( dot( E, R ), 0, 1 );

    float visibility = 1.0;

    //variable bias
    float bias = 0.005 * tan( acos( cosTheta ) );
    bias = clamp( bias, 0, 0.01 );

    // dFragment to the light
    float dFragment = ( ShadowCoord.z-bias ) / ShadowCoord.w;
    float dBlocker = 0;
    float penumbra = 1;
    float wLight = 5.0;

    if( shadowLevel == 3 ) {
        // Sample the shadow map 8 times
        float count = 0;
        float temp;
        float centerBlocker = texture( shadowMap, ShadowCoord.xy).r;
        float scale = (wLight * (dFragment - centerBlocker)) / dFragment;
        for( int i = 0; i < 16; i++ ) {    
            temp = texture( shadowMap, ShadowCoord.xy + (scale * poissonDisk( i ) / 50.0) ).r;
            if( temp < dFragment ) {
                dBlocker += temp;
                count += 1;    
            }
        }

        if( count > 0 ) {
            dBlocker /= count;
            penumbra = wLight * (dFragment - dBlocker) / dFragment;
        }
    }

    if( shadowLevel == 1 ) {
        if( texture( shadowMap,  ShadowCoord.xy).r < dFragment ) {
            visibility -= 0.8;
        }
    } else if( shadowLevel > 1 ) {
        float iterations = 32;
        float sub = 0.8f / iterations;
        for( int i = 0; i < iterations; i++ ) {
            int index = mod( int( 32.0 * random( gl_FragCoord.xyy, i ) ), 32 );
            if( texture( shadowMap,  ShadowCoord.xy + (penumbra * poissonDisk( index ) / 250.0) ).r < dFragment ) {
                visibility -= sub;
            }
        }
    }
    visibility = min( visibility, cosTheta );
    //MaterialDiffuseColor = vec3( 0.8, 0.8, 0.8 );
    fragColor.rgb = MaterialAmbientColor +
        visibility * MaterialDiffuseColor * LightColor * LightPower +
        visibility * MaterialSpecularColor * LightColor * LightPower * pow( cosAlpha, 5             );
}

Note that poissonDisk( int ind ) returns a vec2 with a magnitude of no more than 1 which is in a poisson disk distribution. Even though I'm using shader version 130, I used a function and not an array because the array runs rather slowly on my laptop.

I do bind that shader before I do any rendering. I also make sure to upload the correct variables to all of my uniforms, but I didn't show that to save space since I know it's working correctly.

Does anyone know what's causing this incorrect render?

Was it helpful?

Solution

Well, first of all, stop drawing the VBO using GL_LINES. Use the same primitive mode for immediate mode and VBO drawing.

Also, since when is 3*4 = 3? The address (offset) in your VBO vertex pointers should be the number of elements multiplied by the size of the data type when using an interleaved data structure. GL_FLOAT is 4 bytes, if you have a 3-component vertex position this means that the offset to the next field in your VBO is 3*4 = (void *)12, not (void *)3. This process must continue for each additional vertex array pointer, they all use incorrect offsets.

Likewise, the stride of your VBO should be 12 * sizeof (GLfloat) = 48, not 12.

Licensed under: CC-BY-SA with attribution
Not affiliated with StackOverflow
scroll top