Question

I figured out the subnet mask for both subnets 1 and 2. My problem is I can't grasp how the subnet turns to 172.20.11.254 and 172.20.13.254 respectively? I assume this is VSLM, but not certain. I'm just learning this. I got 172.20.8.0 and 172.20.6.0 as my subnet and I know that is wrong now. Thanks for any help you can provide.

To determine which subnet mask will work for the 172.20.0.0 network, first look at the number of hosts required for each subnet:

Subnet1 (connected to FastEthernet0/0) has 672 hosts. To support 672 hosts, a subnet mask of /22 is required (10 host bits in the 2n-2 formula will afford 1022 host addresses in the subnet). Subnet2 (connected to FastEthernet0/1) has 258 hosts. To support 258 hosts, a subnet mask of /23 is required (9 host bits in the 2n-2 formula will afford 510 host addresses in the subnet). With a network address of 172.20.0.0 and the masks needed to fit the requirements, you need to configure the following IP address and subnet masks:

For the FastEthernet0/0 connection:

172.20.8.0/22 is the third possible subnet. (172.20.0.0/22 is the first possible subnet and 172.20.4.0/22 is the second possible subnet.)
172.20.11.254 is the last possible IP address in the subnet.
255.255.252.0 is the decimal version of a 22-bit mask.
For the FastEthernet0/1 connection:
172.20.12.0/23 is the next available subnet that does not overlap.
172.20.13.254 is the last possible IP address in the subnet.
255.255.254.0 is the decimal version of a 23-bit mask.
Use the following commands to configure the SFO interfaces:

SFO>enable
SFO#configure terminal
SFO(config)#interface FastEthernet0/0
SFO(config-if)#ip address 172.20.11.254 255.255.252.0
SFO(config-if)#no shutdown
SFO(config-if)#interface FastEthernet0/1
SFO(config-if)#ip address 172.20.13.254 255.255.254.0
SFO(config-if)#no shutdown
SFO(config-if)#exit
SFO(config)#exit
SFO#copy run start
Was it helpful?

Solution

I detect some desperation, so let's see if I can convey and understandable explanation. :-)

172.20.0.0 seems to be the address space destined for you to use in this exercise. That is a class B network (255.255.0.0, or /16 netmask), but since we're going to subnet it variably, you can safely forget that. For example, you could subnet all of it it in small, class C subnets (all with a mask of 255.255.255.0, or /24), and if you did you would use 172.20.0.0/24 for one network, 172.20.1.0/24 for another, 172.20.2.0/24 for another, and so on. But if you did that, each subnet would be able to hold no more than 254 hosts (that is because you leave the last octet - 8 bits - for the host portion, and you have to reserve two - the first and last - for the subnet address and the broadcast address: 2^8-2=254).

But 254 hosts is not enough for your needs, since you have requirements for 672 and 258.

If you use a smaller sized mask (meaning larger sized network -> more hosts) like a /23 (255.255.254.0) you now have 9 bits for the host portion, therefore you can acommodate 2^9-2=510 hosts, big enough for 258, but not for 672. So for the latter you will need a /22 network (255.255.252.0), which will leave 10 bits for the host portion thus allowing 2^10-2=1022.

With each bit you reduce in the netmask, you double your network size. So if a /24 goes from 172.20.0.0 to 172.20.0.255 (the single '0' class C network), a /23 goes from 172.20.0.0 to 172.20.1.255 (two class C networks, '0' and '1'). And a /22 goes from 172.20.0.0 to 172.20.3.255 (four class C networks). In each case the first address is considered the network address and is not assigned to any device, and the last one is the broadcast address, and is not assigned either.

So, back to your example, they choose to assign the 3rd /22 network (1st being from 172.20.0.0 to 172.20.3.255, 2nd being from 172.20.4.0 to 172.20.7.255, and 3rd being from 172.20.8.0 to 172.20.11.255) to that particular subnet. So 172.20.8.0/22 it is. And they choose to assign the 7th /23 subnet possible (1st is '0' and '1' class C's, 2nd is '2' and '3' class C's, and so on) to the other subnet. So 172.20.12.0/23 it is for it. Remember that they cannot overlap!

Now, as to why they chose the .254 addresses for the router interfaces, that is just a convention. Router interfaces are usually configured to use either the first usable (.1) IP address or the last usable (.254) IP address in their subnets, at least on the LAN side. Note that your subnets' broadcast addresses are 172.20.11.255 for the /22 and 172.20.13.255 for the /23. In both cases they picked for the router interfaces the address which is one below them, i.e. the last usable address. But it could have been any one in the corresponding range.

Did that help?

Licensed under: CC-BY-SA with attribution
Not affiliated with StackOverflow
scroll top