Question

I'm trying to execute code to perform the Diffie-Hellman key exchange. I sourced the code from an example online (forget where now). I had to import the bouncycastle.jar, which I assumed worked up until execution.

stacktrace screenshot

my code:

package testproject;

import java.math.BigInteger;
import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.security.MessageDigest;
import java.security.SecureRandom;
import java.security.Security;
import javax.crypto.KeyAgreement;
import javax.crypto.spec.DHParameterSpec;

public class KeyGen {

  private static BigInteger g512 = new BigInteger("1234567890", 16);
  //generates a random, non-negative integer for Base

  private static BigInteger p512 = new BigInteger("1234567890", 16);
  //generates a random, non-negative integer for Prime

  public static void main(String[] args) throws Exception {
    Security.addProvider(new org.bouncycastle.jce.provider.BouncyCastleProvider());
    DHParameterSpec dhParams = new DHParameterSpec(p512, g512);
    //Specify parameters to use for the algorithm
    KeyPairGenerator keyGen = KeyPairGenerator.getInstance("DH", "BC");
    //Define specific algorithm to use "diffie-hellman", with provider "bc"

    keyGen.initialize(dhParams, new SecureRandom());
    //initialize with parameters & secure random seed

    KeyAgreement aKeyAgree = KeyAgreement.getInstance("DH", "BC");
    //define algorithm for A's key agreement
    KeyPair aPair = keyGen.generateKeyPair();
    //generate keyPair for A

    KeyAgreement bKeyAgree = KeyAgreement.getInstance("DH", "BC");
    //define algorithm for B's key agreement
    KeyPair bPair = keyGen.generateKeyPair();
    //generate keyPair for B

    aKeyAgree.init(aPair.getPrivate());
    //initialize A's keyAgreement with A's private key
    bKeyAgree.init(bPair.getPrivate());
    //initialize B's keyAgreement with B's private key

    aKeyAgree.doPhase(bPair.getPublic(), true);
    //do last phase of A's keyAgreement with B's public key
    bKeyAgree.doPhase(aPair.getPublic(), true);
    //do last phase of B's keyAgreement with A's public key

    MessageDigest hash = MessageDigest.getInstance("SHA1", "BC");

    System.out.println(new String(hash.digest(aKeyAgree.generateSecret())));
    //generate secret key for A, hash it.
    System.out.println(new String(hash.digest(bKeyAgree.generateSecret())));
    //generate secret key for B, hash it.
  }
}

This is the line causing the problem:

KeyPair aPair = keyGen.generateKeyPair();

I'm confused as to what the error is, as I've found each of the methods it's returning 'unknown source' for.

Any light shed on this would be much appreciated.

Continued(Edit): Java - Diffie-Hellman Encryption - Wrong Output

Was it helpful?

Solution

You already preferred bouncycastle version. But I implemented a little helloworld version of it for learning purposes. Maybe it can be helpful for those who simply wants to use Diffie-Hellman in pure Java without dependencies:

// 1. ------------------------------------------------------------------
// This is Alice and Bob
// Alice and Bob want to chat securely. But how?

final Person alice = new Person();
final Person bob   = new Person();

//    ?                                        ?
//
//    O                                        O
//   /|\                                      /|\
//   / \                                      / \
//
//  ALICE                                     BOB

// 2. ------------------------------------------------------------------
// Alice and Bob generate public and private keys.

alice.generateKeys();
bob.generateKeys();

//
//    O                                        O
//   /|\                                      /|\
//   / \                                      / \
//
//  ALICE                                     BOB
//  _ PUBLIC KEY                              _ PUBLIC KEY
//  _ PRIVATE KEY                             _ PRIVATE KEY

// 3. ------------------------------------------------------------------
// Alice and Bob exchange public keys with each other.

alice.receivePublicKeyFrom(bob);
bob.receivePublicKeyFrom(alice);

//
//    O                                        O
//   /|\                                      /|\
//   / \                                      / \
//
//  ALICE                                     BOB
//  + public key                              + public key
//  + private key                             + private key
//  _ PUBLIC KEY <------------------------->  _ PUBLIC KEY

// 4. ------------------------------------------------------------------
// Alice generates common secret key via using her private key and Bob's public key.
// Bob generates common secret key via using his private key and Alice's public key.
// Both secret keys are equal without TRANSFERRING. This is the magic of Diffie-Hellman algorithm.

alice.generateCommonSecretKey();
bob.generateCommonSecretKey();

//
//    O                                        O
//   /|\                                      /|\
//   / \                                      / \
//
//  ALICE                                     BOB
//  + public key                              + public key
//  + private key                             + private key
//  + public key                              + public key
//  _ SECRET KEY                              _ SECRET KEY

// 5. ------------------------------------------------------------------
// Alice encrypts message using the secret key and sends to Bob

alice.encryptAndSendMessage("Bob! Guess Who I am.", bob);

//
//    O                                        O
//   /|\ []-------------------------------->  /|\
//   / \                                      / \
//
//  ALICE                                     BOB
//  + public key                              + public key
//  + private key                             + private key
//  + public key                              + public key
//  + secret key                              + secret key
//  + message                                 _ MESSAGE

// 6. ------------------------------------------------------------------
// Bob receives the important message and decrypts with secret key.

bob.whisperTheSecretMessage();

//
//    O                     (((   (((   (((   \O/   )))
//   /|\                                       |
//   / \                                      / \
//
//  ALICE                                     BOB
//  + public key                              + public key
//  + private key                             + private key
//  + public key                              + public key
//  + secret key                              + secret key
//  + message                                 + message

https://github.com/firatkucuk/diffie-hellman-helloworld

OTHER TIPS

This comment is simply wrong:

private static BigInteger g512 = new BigInteger("1234567890", 16);
//generates a random, non-negative integer for Base

All you are doing there is creating the number 0x1234567890 every time. There is nothing random about it.

It looks like you copied from http://www.java2s.com/Tutorial/Java/0490__Security/DiffieHellmanKeyAgreement.htm. As this answer agrees, the code there does not make sense.

You could try the actual key exchange example on that site.

Modify your code with this

int bitLength = 2048; // 1024, 2048

SecureRandom rnd = new SecureRandom();

BigInteger p = BigInteger.probablePrime(bitLength, rnd); 

BigInteger g = BigInteger.probablePrime(bitLength, rnd); 

// specify parameters to use for the algorithm

DHParameterSpec dhParams = new DHParameterSpec(p, g);

Instead of the code:

private static BigInteger g512 = new BigInteger("1234567890", 16);
   //generates a random, non-negative integer for Base

   private static BigInteger p512 = new BigInteger("1234567890", 16);
   //generates a random, non-negative integer for Prime

you need to use:

// The base used with the SKIP 1024 bit modulus
private static final BigInteger g512 = BigInteger.valueOf(2);

// The 1024 bit Diffie-Hellman modulus values used by SKIP
private static final byte skip1024ModulusBytes[] = { (byte) 0xF4,
    (byte) 0x88, (byte) 0xFD, (byte) 0x58, (byte) 0x4E, (byte) 0x49,
    (byte) 0xDB, (byte) 0xCD, (byte) 0x20, (byte) 0xB4, (byte) 0x9D,
    (byte) 0xE4, (byte) 0x91, (byte) 0x07, (byte) 0x36, (byte) 0x6B,
    (byte) 0x33, (byte) 0x6C, (byte) 0x38, (byte) 0x0D, (byte) 0x45,
    (byte) 0x1D, (byte) 0x0F, (byte) 0x7C, (byte) 0x88, (byte) 0xB3,
    (byte) 0x1C, (byte) 0x7C, (byte) 0x5B, (byte) 0x2D, (byte) 0x8E,
    (byte) 0xF6, (byte) 0xF3, (byte) 0xC9, (byte) 0x23, (byte) 0xC0,
    (byte) 0x43, (byte) 0xF0, (byte) 0xA5, (byte) 0x5B, (byte) 0x18,
    (byte) 0x8D, (byte) 0x8E, (byte) 0xBB, (byte) 0x55, (byte) 0x8C,
    (byte) 0xB8, (byte) 0x5D, (byte) 0x38, (byte) 0xD3, (byte) 0x34,
    (byte) 0xFD, (byte) 0x7C, (byte) 0x17, (byte) 0x57, (byte) 0x43,
    (byte) 0xA3, (byte) 0x1D, (byte) 0x18, (byte) 0x6C, (byte) 0xDE,
    (byte) 0x33, (byte) 0x21, (byte) 0x2C, (byte) 0xB5, (byte) 0x2A,
    (byte) 0xFF, (byte) 0x3C, (byte) 0xE1, (byte) 0xB1, (byte) 0x29,
    (byte) 0x40, (byte) 0x18, (byte) 0x11, (byte) 0x8D, (byte) 0x7C,
    (byte) 0x84, (byte) 0xA7, (byte) 0x0A, (byte) 0x72, (byte) 0xD6,
    (byte) 0x86, (byte) 0xC4, (byte) 0x03, (byte) 0x19, (byte) 0xC8,
    (byte) 0x07, (byte) 0x29, (byte) 0x7A, (byte) 0xCA, (byte) 0x95,
    (byte) 0x0C, (byte) 0xD9, (byte) 0x96, (byte) 0x9F, (byte) 0xAB,
    (byte) 0xD0, (byte) 0x0A, (byte) 0x50, (byte) 0x9B, (byte) 0x02,
    (byte) 0x46, (byte) 0xD3, (byte) 0x08, (byte) 0x3D, (byte) 0x66,
    (byte) 0xA4, (byte) 0x5D, (byte) 0x41, (byte) 0x9F, (byte) 0x9C,
    (byte) 0x7C, (byte) 0xBD, (byte) 0x89, (byte) 0x4B, (byte) 0x22,
    (byte) 0x19, (byte) 0x26, (byte) 0xBA, (byte) 0xAB, (byte) 0xA2,
    (byte) 0x5E, (byte) 0xC3, (byte) 0x55, (byte) 0xE9, (byte) 0x2F,
    (byte) 0x78, (byte) 0xC7 };

// The SKIP 1024 bit modulus
private static final BigInteger p512 = new BigInteger(1, skip1024ModulusBytes);
Licensed under: CC-BY-SA with attribution
Not affiliated with StackOverflow
scroll top