Question

I'm trying to figure out how MATLAB does the short time Fourier transforms for its spectrogram function (and related functions like specgram, or stft in Octave). What is curious to me is that you can apparently specify the length of the window and the FFT length (number of output frequencies) independently, whereas I would have expected that these two should be equal (since the length of an FFT'd signal is the same as the length of the original signal). To illustrate what I mean, here is the function call:

[S,F,T]=spectrogram(signal,winSize,overlapSize,fftSize,rate);

winSize is the length of subintervals which are to be (individually) FFT'd, and fftSize is the number of frequency components given in the output. When these are not equal, does Matlab do interpolation to produce the required number of frequency bins?

Ultimately the reason I want to know is so that I can determine the proper units and scaling for the frequencies.

Cheers

Was it helpful?

Solution

A windowed segment of a signal can be zero-padded to a longer length vector to use a longer FFT. The frequency scaling will be determined by the length of the FFT (and the signals sample rate). The window size and window formula will determine the effective resolution, in terms of peak separation ability.

Why do this? Some FFT sizes can be computed more efficiently than others (slightly or a lot, depending on the FFT library used). Also, a longer FFT will calculate more points or bins, thus producing a higher density of interpolated points in a potentially smoother spectrum result.

Licensed under: CC-BY-SA with attribution
Not affiliated with StackOverflow
scroll top