Question

C++ code:

struct tPacket
{
    WORD word1;
    WORD word2;
    BYTE byte1;
    BYTE byte2;
    BYTE array123[8];
}

static char data[8192] = {0};
...
some code to fill up the array
...
tPacket * packet = (tPacket *)data;

We can't do that as easy in C#.

Please note there is an array in the C++ structure.

Alternatively, using this source file could do the job for us, but not if there is an array in the structure.

Was it helpful?

Solution

I think what you are looking for (if you are using a similar structure definition like JaredPar posted) is something like this:

tPacket t = new tPacket();
byte[] buffer = new byte[Marshal.SizeOf(typeof(tPacket))];
socket.Receive(buffer, 0, buffer.length, 0);

GCHandle pin = GCHandle.Alloc(buffer, GCHandleType.Pinned);
t = (tPacket)Marshal.PtrToStructure(pin.AddrOfPinnedObject(), typeof(tPacket));
pin.free();

//do stuff with your new tPacket t

OTHER TIPS

I'm unsure of exactly what you are asking. Are you trying to get an equivalent structure definition in C# for plain old C# usage or for interop (PInvoke) purposes? If it's for PInvoke the follownig structure will work

[System.Runtime.InteropServices.StructLayoutAttribute(System.Runtime.InteropServices.LayoutKind.Sequential)]
public struct tPacket {

    /// WORD->unsigned short
    public ushort word1;

    /// WORD->unsigned short
    public ushort word2;

    /// BYTE->unsigned char
    public byte byte1;

    /// BYTE->unsigned char
    public byte byte2;

    /// BYTE[8]
    [System.Runtime.InteropServices.MarshalAsAttribute(System.Runtime.InteropServices.UnmanagedType.ByValArray, SizeConst=8, ArraySubType=System.Runtime.InteropServices.UnmanagedType.I1)]
    public byte[] array123;
}

If you are looking for a plain old C# structure that has the same characteristics, it's unfortunately not possible to do with a struct. You cannot define an inline array of a contstant size in a C# structure nor can you force the array to be a specific size through an initializer.

There are two alternative options in the managed world.

Use a struct which has a create method that fills out the array

[System.Runtime.InteropServices.StructLayoutAttribute(System.Runtime.InteropServices.LayoutKind.Sequential)]
public struct tPacket {
    public ushort word1;
    public ushort word2;
    public byte byte1;
    public byte byte2;
    public byte[] array123;
    public static tPacket Create() { 
      return new tPacket() { array123 = new byte[8] };
    }
}

Or alternatively use a class where you can initialize the array123 member variable directly.

EDIT OP watns to know how to convert a byte[] into a tPacket value

Unfortunately there is no great way to do this in C#. C++ was awesome for this kind of task because has a very weak type system in that you could choose to view a stream of bytes as a particular structure (evil pointer casting).

This may be possible in C# unsafe code but I do not believe it is.

Essentially what you will have to do is manually parse out the bytes and assign them to the various values in the struct. Or write a native method which does the C style casting and PInvoke into that function.

It can be done with unsafe code too, although it restricts the context under which your program can run, and, naturally, introduces the possibility of security flaws. The advantage is that you cast directly from an array to the structure using pointers and it's also maintenance-free if you are only going to add or remove fields from the struct. However, accessing the arrays require using the fixed-statement as the GC can still move the struct around in memory when it's contained in an object.

Here's some modified code of an unsafe struct I used for interpreting UDP packets:

using System;
using System.Runtime.InteropServices;

[StructLayout(LayoutKind.Sequential)]
public unsafe struct UnsafePacket
{
    int time;
    short id0;
    fixed float acc[3];
    short id1;
    fixed float mat[9];

    public UnsafePacket(byte[] rawData)
    {
        if (rawData == null)
            throw new ArgumentNullException("rawData");
        if (sizeof(byte) * rawData.Length != sizeof(UnsafePacket))
            throw new ArgumentException("rawData");

        fixed (byte* ptr = &rawData[0])
        {
            this = *(UnsafePacket*)rawPtr;
        }
    }

    public float GetAcc(int index)
    {
        if (index < 0 || index >= 3)
            throw new ArgumentOutOfRangeException("index");
        fixed (UnsafePacket* ptr = &acc)
        {
            return ptr[index];
        }
    }

    public float GetMat(int index)
    {
        if (index < 0 || index >= 9)
            throw new ArgumentOutOfRangeException("index");
        fixed (UnsafePacket* ptr = &mat)
        {
            return ptr[index];
        }
    }

            // etc. for other properties
}

For this kind of code it is extremely important to check that the length of the array perfectly matches the size of the struct, otherwise you'll open for some nasty buffer overflows. As the unsafe keyword has been applied to the whole struct, you don't need to mark each method or codeblock as separate unsafe statements.

You can place what looks to the outside world like an array of fixed size within a safe structure by writing functions within the structure for access. For example, here is a fixed 4 by 4 double precision array within a safe structure:

public struct matrix4 //  4 by 4 matrix  
{  
    //  
    //  Here we will create a square matrix that can be written to and read from similar  
    //  (but not identical to) using an array.  Reading and writing into this structure  
    //  is slower than using an array (due to nested switch blocks, where nest depth  
    //  is the dimensionality of the array, or 2 in this case).  A big advantage of this  
    //  structure is that it operates within a safe context.  
    //  
    private double a00; private double a01; private double a02; private double a03;  
    private double a10; private double a11; private double a12; private double a13;  
    private double a20; private double a21; private double a22; private double a23;  
    private double a30; private double a31; private double a32; private double a33;  
    //
    public void AssignAllZeros()                    //  Zero out the square matrix  
    { /* code */}               
    public double Determinant()                     //  Common linear algebra function  
    { /* code */}  
    public double Maximum()                         //  Returns maximum value in matrix  
    { /* code */}  
    public double Minimum()                         //  Minimum value in matrix  
    { /* code */}  
    public double Read(short row, short col)        //  Outside read access   
    { /* code */}  
    public double Read(int row, int col)            //  Outside read access overload  
    { /* code */}  
    public double Sum()                             //  Sum of 16 double precision values  
    {  
        return a00 + a01 + a02 + a03 + a10 + a11 + a12 + a13 + a20 + a21 + a22 + a23 + a30 + a31 + a32 + a33;  
    }  
    public void Write(short row, short col, double doubleValue)  //  Write access to matrix  
    { /* code */}  
    public void Write(int row, int col, double doubleValue)      //  Write access overload  
    { /* code */}              
}
Licensed under: CC-BY-SA with attribution
Not affiliated with StackOverflow
scroll top