Question

I read that the first 3 GBs are reserved for the process and the last GB is for the Kernel. I also read that the kernel is loaded starting from the 2nd MB of the physical address space (depending on the configuration). My question is that is the mapping of that last 1 GB is same for all processes and maps to this physical area of memory?

Another question is, when a process switches to kernel mode (eg, when a sys call occurs), then what page tables are used, the process page tables or the kernel page tables? If kernel page tables are used, then they can't access the memory locations belonging to the process. If that is the case, then there is apparently no use for the kernel virtual memory since all access to kernel code and data will be through the mapping of the last 1 GB of process address space. Please help me clarify this (any useful links will be much appreciated)

Was it helpful?

Solution

Yes, the mapping of the kernel part of the address space is the same in all processes. Part of it does map that part of the physical memory where the kernel image is loaded, but that's not the bulk of it - the remainder is used to map other physical memory locations for the kernel's runtime working set.

When a process switches to kernel mode, the page tables are not changed. The kernel part of the address space simply becomes accessible because the CPL (Current Privilege Level) is now zero.

OTHER TIPS

It seems, you are talking about 32-bit x86 systems, right?

If I am not mistaken, the kernel can be configured not only for 3Gb/1Gb memory distrubution, there could be other variants (e.g. 2Gb/2Gb). Still, 3Gb/1Gb is probably the most common one on x86-32.

The kernel part of the address space should be inaccessible from the user space. From the kernel's point of view, yes, the mapping of the memory occupied by the kernel itself is always the same. No matter, in the context of which process (or interrupt handler, or whatever else) the kernel currently operates.

As one of the consequences, if you look at the addresses of kernel symbols in /proc/kallsyms from different processes, you will see the same addresses each time. And these are exactly the addresses of the respective kernel functions, variables and others from the kernel's point of view.

So I suppose, the answer to your first question is "yes" but it is probably not very useful for the user-space code as the kernel space memory is not directly accessible from there anyway.

As for the second question, well, if the kernel currently operates in the context of some process, it can actually access the user-space memory of that process. I can't describe it in detail but probably the implementation of kernel functions copy_from_user and copy_to_user could give you some hints. See arch/x86/lib/usercopy_32.c and arch/x86/include/asm/uaccess.h in the kernel sources. It seems, on x86-32, the user-space memory is accessed in these functions directly, using the default memory mappings for the current process context. The 'magic' stuff there is only related to the optimizations and checking the address of the memory area for correctness.

Licensed under: CC-BY-SA with attribution
Not affiliated with StackOverflow
scroll top