Question

I have been using C# for a while now, and going back to C++ is a headache. I am trying to get some of my practices from C# with me to C++, but I am finding some resistance and I would be glad to accept your help.

I would like to expose an iterator for a class like this:

template <class T>
class MyContainer
{
public:
    // Here is the problem:
    // typedef for MyIterator without exposing std::vector publicly?

    MyIterator Begin() { return mHiddenContainerImpl.begin(); }
    MyIterator End() { return mHiddenContainerImpl.end(); }

private:
    std::vector<T> mHiddenContainerImpl;
};

Am I trying at something that isn't a problem? Should I just typedef std::vector< T >::iterator? I am hoping on just depending on the iterator, not the implementing container...

Was it helpful?

Solution

You may find the following article interesting as it addresses exactly the problem you have posted: On the Tension Between Object-Oriented and Generic Programming in C++ and What Type Erasure Can Do About It

OTHER TIPS

I have done the following before so that I got an iterator that was independent of the container. This may have been overkill since I could also have used an API where the caller passes in a vector<T*>& that should be populated with all the elements and then the caller can just iterate from the vector directly.

template <class T>
class IterImpl
{
public:
    virtual T* next() = 0;
};

template <class T>
class Iter
{
public:
    Iter( IterImpl<T>* pImpl ):mpImpl(pImpl) {};
    Iter( Iter<T>& rIter ):mpImpl(pImpl) 
    {
        rIter.mpImpl = 0; // take ownership
    }
    ~Iter() {
        delete mpImpl; // does nothing if it is 0
    }
    T* next() {
    return mpImpl->next(); 
    }
private:
    IterImpl<T>* mpImpl; 
};

template <class C, class T>
class IterImplStl : public IterImpl<T>
{
public:
    IterImplStl( C& rC )
    :mrC( rC ),
    curr( rC.begin() )
    {}
    virtual T* next()
    {
    if ( curr == mrC.end() ) return 0;
    typename T* pResult = &*curr;
    ++curr;
    return pResult;
    }
private:
    C& mrC;
    typename C::iterator curr;
};


class Widget;

// in the base clase we do not need to include widget
class TestBase
{
public:
    virtual Iter<Widget> getIter() = 0;
};


#include <vector>

class Widget
{
public:
    int px;
    int py;
};

class Test : public TestBase
{
public:
    typedef std::vector<Widget> WidgetVec;

    virtual Iter<Widget> getIter() {
        return Iter<Widget>( new IterImplStl<WidgetVec, Widget>( mVec ) ); 
        }

    void add( int px, int py )
    {
        mVec.push_back( Widget() );
        mVec.back().px = px;
        mVec.back().py = py;
    }
private:
    WidgetVec mVec;
};


void testFn()
{
    Test t;
    t.add( 3, 4 );
    t.add( 2, 5 );

    TestBase* tB = &t;
    Iter<Widget> iter = tB->getIter();
    Widget* pW;
    while ( pW = iter.next() )
    {
        std::cout << "px: " << pW->px << " py: " << pW->py << std::endl;
    }
}

This should do what you want:

typedef typename std::vector<T>::iterator MyIterator;

From Accelerated C++:

Whenever you have a type, such as vector<T>, that depends on a template parameter, and you want to use a member of that type, such as size_type, that is itself a type, you must precede the entire name by typename to let the implementation know to treat the name as a type.

I am unsure about what you mean by "not exposing std::vector publicly" but indeed, you can just define your typedef like that:

typedef typename std::vector<T>::iterator iterator;
typedef typename std::vector<T>::const_iterator const_iterator; // To work with constant references

You will be able to change these typedefs later without the user noticing anything ...

By the way, it is considered good practice to also expose a few other types if you want your class to behave as a container:

typedef typename std::vector<T>::size_type size_type;
typedef typename std::vector<T>::difference_type difference_type;
typedef typename std::vector<T>::pointer pointer;
typedef typename std::vector<T>::reference reference;

And if needed by your class:

 typedef typename std::vector<T>::const_pointer const_pointer;
 typedef typename std::vector<T>::const_reference const_reference;

You'll find the meaning of all these typedef's here: STL documentation on vectors

Edit: Added the typename as suggested in the comments

Licensed under: CC-BY-SA with attribution
Not affiliated with StackOverflow
scroll top