Question

As background for a side project, I've been reading about different virtual machine designs, with the JVM of course getting the most press. I've also looked at BEAM (Erlang), GHC's RTS (kind of but not quite a VM) and some of the JavaScript implementations. Python also has a bytecode interpreter that I know exists, but have not read much about.

What I have not found is a good explanation of why particular virtual machine design choices are made for a particular language. I'm particularly interested in design choices that would fit with concurrent and/or very dynamic (Ruby, JavaScript, Lisp) languages.


Edit: In response to a comment asking for specificity here is an example. The JVM uses a stack machine rather then a register machine, which was very controversial when Java was first introduced. It turned out that the engineers who designed the JVM had done so intending platform portability, and converting a stack machine back into a register machine was easier and more efficient then overcoming an impedance mismatch where there were too many or too few registers virtual.

Here's another example: for Haskell, the paper to look at is Implementing lazy functional languages on stock hardware: the Spineless Tagless G-machine. This is very different from any other type of VM I know about. And in point of fact GHC (the premier implementation of Haskell) does not run live, but is used as an intermediate step in compilation. Peyton-Jones lists no less then 8 other virtual machines that didn't work. I would like to understand why some VM's succeed where other fail.

Was it helpful?

Solution

I'll answer your question from a different tack: what is a VM? A VM is just a specification for "interpreter" of a lower level language than the source language. Here I'm using the black box meaning of the word "interpreter". I don't care how a VM gets implemented (as a bytecode intepereter, a JIT compiler, whatever). When phrased that way, from a design point of view the VM isn't the interesting thing it's the low level language.

The ideal VM language will do two things. One, it will make it easy to compile the source language into it. And two it will also make it easy to interpret on the target platform(s) (where again the interpreter could be implemented very naively or could be some really sophisticated JIT like Hotspot or V8).

Obviously there's a tension between those two desirable properties, but they do more or less form two end points on a line through the design space of all possible VMs. (Or, perhaps some more complicated shape than a line because this isn't a flat Euclidean space, but you get the idea). If you build your VM language far outside of that line then it won't be very useful. That's what constrains VM design: putting it somewhere into that ideal line.

That line is also why high level VMs tend to be very language specific while low level VMs are more language agnostic but don't provide many services. A high level VM is by its nature close to the source language which makes it far from other, different source languages. A low level VM is by its nature close to the target platform thus close to the platform end of the ideal lines for many languages but that low level VM will also be pretty far from the "easy to compile to" end of the ideal line of most source languages.

Now, more broadly, conceptually any compiler can be seen as a series of transformations from the source language to intermediate forms that themselves can be seen as languages for VMs. VMs for the intermediate languages may never be built, but they could be. A compiler eventually emits the final form. And that final form will itself be a language for a VM. We might call that VM "JVM", "V8"...or we might call that VM "x86", "ARM", etc.

Hope that helps.

OTHER TIPS

One of the techniques of deriving a VM is to just go down the compilation chain, transforming your source language into more and more low level intermediate languages. Once you spot a low level enough language suitable for a flat representation (i.e., the one which can be serialised into a sequence of "instructions"), this is pretty much your VM. And your VM interpreter or JIT compiler would just continue your transformations chain from the point you selected for a serialisation.

Some serialisation techniques are very common - e.g., using a pseudo-stack representation for expression trees (like in .NET CLR, which is not a "real" stack machine at all). Otherwise you may want to use an SSA-form for serialisation, as in LLVM, or simply a 3-address VM with an infinite number of registers (as in Dalvik). It does not really matter which way you take, since it is only a serialisation and it would be de-serialised later to carry on with your normal way of compilation.

It is a bit different story if you intend to interpret you VM code immediately instead of compiling it. There is no consensus currently in what kind of VMs are better suited for interpretation. Both stack- (or I'd dare to say, Forth-) based VMs and register-based had proven to be efficient.

I found this book to be helpful. It discusses many of the points you are asking about. (note I'm not in any way affiliated with Amazon, nor am I promoting Amazon; just was the easiest place to link from).

http://www.amazon.com/dp/1852339691/

Licensed under: CC-BY-SA with attribution
Not affiliated with StackOverflow
scroll top