Question

How would you write a Parsing Expression Grammar in any of the following Parser Generators (PEG.js, Citrus, Treetop) which can handle Python/Haskell/CoffeScript style indentation:

Examples of a not-yet-existing programming language:

square x =
    x * x

cube x =
    x * square x

fib n =
  if n <= 1
    0
  else
    fib(n - 2) + fib(n - 1) # some cheating allowed here with brackets

Update: Don't try to write an interpreter for the examples above. I'm only interested in the indentation problem. Another example might be parsing the following:

foo
  bar = 1
  baz = 2
tap
  zap = 3

# should yield (ruby style hashmap):
# {:foo => { :bar => 1, :baz => 2}, :tap => { :zap => 3 } }
Was it helpful?

Solution

Pure PEG cannot parse indentation.

But peg.js can.

I did a quick-and-dirty experiment (being inspired by Ira Baxter's comment about cheating) and wrote a simple tokenizer.

For a more complete solution (a complete parser) please see this question: Parse indentation level with PEG.js

/* Initializations */
{
  function start(first, tail) {
    var done = [first[1]];
    for (var i = 0; i < tail.length; i++) {
      done = done.concat(tail[i][1][0])
      done.push(tail[i][1][1]);
    }
    return done;
  }

  var depths = [0];

  function indent(s) {
    var depth = s.length;

    if (depth == depths[0]) return [];

    if (depth > depths[0]) {
      depths.unshift(depth);
      return ["INDENT"];
    }

    var dents = [];
    while (depth < depths[0]) {
      depths.shift();
      dents.push("DEDENT");
    }

    if (depth != depths[0]) dents.push("BADDENT");

    return dents;
  }
}

/* The real grammar */
start   = first:line tail:(newline line)* newline? { return start(first, tail) }
line    = depth:indent s:text                      { return [depth, s] }
indent  = s:" "*                                   { return indent(s) }
text    = c:[^\n]*                                 { return c.join("") }
newline = "\n"                                     {}

depths is a stack of indentations. indent() gives back an array of indentation tokens and start() unwraps the array to make the parser behave somewhat like a stream.

peg.js produces for the text:

alpha
  beta
  gamma
    delta
epsilon
    zeta
  eta
theta
  iota

these results:

[
   "alpha",
   "INDENT",
   "beta",
   "gamma",
   "INDENT",
   "delta",
   "DEDENT",
   "DEDENT",
   "epsilon",
   "INDENT",
   "zeta",
   "DEDENT",
   "BADDENT",
   "eta",
   "theta",
   "INDENT",
   "iota",
   "DEDENT",
   "",
   ""
]

This tokenizer even catches bad indents.

OTHER TIPS

I think an indentation-sensitive language like that is context-sensitive. I believe PEG can only do context-free langauges.

Note that, while nalply's answer is certainly correct that PEG.js can do it via external state (ie the dreaded global variables), it can be a dangerous path to walk down (worse than the usual problems with global variables). Some rules can initially match (and then run their actions) but parent rules can fail thus causing the action run to be invalid. If external state is changed in such an action, you can end up with invalid state. This is super awful, and could lead to tremors, vomiting, and death. Some issues and solutions to this are in the comments here: https://github.com/dmajda/pegjs/issues/45

So what we are really doing here with indentation is creating something like a C-style blocks which often have their own lexical scope. If I were writing a compiler for a language like that I think I would try and have the lexer keep track of the indentation. Every time the indentation increases it could insert a '{' token. Likewise every time it decreases it could inset an '}' token. Then writing an expression grammar with explicit curly braces to represent lexical scope becomes more straight forward.

You can do this in Treetop by using semantic predicates. In this case you need a semantic predicate that detects closing a white-space indented block due to the occurrence of another line that has the same or lesser indentation. The predicate must count the indentation from the opening line, and return true (block closed) if the current line's indentation has finished at the same or shorter length. Because the closing condition is context-dependent, it must not be memoized. Here's the example code I'm about to add to Treetop's documentation. Note that I've overridden Treetop's SyntaxNode inspect method to make it easier to visualise the result.

grammar IndentedBlocks
  rule top
    # Initialise the indent stack with a sentinel:
    &{|s| @indents = [-1] }
    nested_blocks
    {
      def inspect
        nested_blocks.inspect
      end
    }
  end

  rule nested_blocks
    (
      # Do not try to extract this semantic predicate into a new rule.
      # It will be memo-ized incorrectly because @indents.last will change.
      !{|s|
        # Peek at the following indentation:
        save = index; i = _nt_indentation; index = save
        # We're closing if the indentation is less or the same as our enclosing block's:
        closing = i.text_value.length <= @indents.last
      }
      block
    )*
    {
      def inspect
        elements.map{|e| e.block.inspect}*"\n"
      end
    }
  end

 rule block
    indented_line       # The block's opening line
    &{|s|               # Push the indent level to the stack
      level = s[0].indentation.text_value.length
      @indents << level
      true
    }
    nested_blocks       # Parse any nested blocks
    &{|s|               # Pop the indent stack
      # Note that under no circumstances should "nested_blocks" fail, or the stack will be mis-aligned
      @indents.pop
      true
    }
    {
      def inspect
        indented_line.inspect +
          (nested_blocks.elements.size > 0 ? (
            "\n{\n" +
            nested_blocks.elements.map { |content|
              content.block.inspect+"\n"
            }*'' +
            "}"
          )
          : "")
      end
    }
  end

  rule indented_line
    indentation text:((!"\n" .)*) "\n"
    {
      def inspect
        text.text_value
      end
    }
  end

  rule indentation
    ' '*
  end
end

Here's a little test driver program so you can try it easily:

require 'polyglot'
require 'treetop'
require 'indented_blocks'

parser = IndentedBlocksParser.new

input = <<END
def foo
  here is some indented text
    here it's further indented
    and here the same
      but here it's further again
      and some more like that
    before going back to here
      down again
  back twice
and start from the beginning again
  with only a small block this time
END 

parse_tree = parser.parse input

p parse_tree

I know this is an old thread, but I just wanted to add some PEGjs code to the answers. This code will parse a piece of text and "nest" it into a sort of "AST-ish" structure. It only goes one deep and it looks ugly, furthermore it does not really use the return values to create the right structure but keeps an in-memory tree of your syntax and it will return that at the end. This might well become unwieldy and cause some performance issues, but at least it does what it's supposed to.

Note: Make sure you have tabs instead of spaces!

{ 
    var indentStack = [], 
        rootScope = { 
            value: "PROGRAM",
            values: [], 
            scopes: [] 
        };

    function addToRootScope(text) {
        // Here we wiggle with the form and append the new
        // scope to the rootScope.

        if (!text) return;

        if (indentStack.length === 0) {
            rootScope.scopes.unshift({
                text: text,
                statements: []
            });
        }
        else {
            rootScope.scopes[0].statements.push(text);
        }
    }
}

/* Add some grammar */

start
  = lines: (line EOL+)*
    { 
        return rootScope;
    }


line
  = line: (samedent t:text { addToRootScope(t); }) &EOL
  / line: (indent t:text { addToRootScope(t); }) &EOL
  / line: (dedent t:text { addToRootScope(t); }) &EOL
  / line: [ \t]* &EOL
  / EOF

samedent
  = i:[\t]* &{ return i.length === indentStack.length; }
    {
        console.log("s:", i.length, " level:", indentStack.length);
    }

indent
  = i:[\t]+ &{ return i.length > indentStack.length; }
    {
        indentStack.push(""); 
        console.log("i:", i.length, " level:", indentStack.length);
    }

dedent
    = i:[\t]* &{ return i.length < indentStack.length; }
      {
          for (var j = 0; j < i.length + 1; j++) {
              indentStack.pop();
          } 
          console.log("d:", i.length + 1, " level:", indentStack.length);  
      }

text
    = numbers: number+  { return numbers.join(""); } 
    / txt: character+   { return txt.join(""); }


number
    = $[0-9] 

character 
    = $[ a-zA-Z->+]  
__
    = [ ]+

_ 
    = [ ]*

EOF 
    = !.

EOL
    = "\r\n" 
    / "\n" 
    / "\r"
Licensed under: CC-BY-SA with attribution
Not affiliated with StackOverflow
scroll top