Question

I need a timer tick with 1ms resolution under linux. It is used to increment a timer value that in turn is used to see if various Events should be triggered. The POSIX timerfd_create is not an option because of the glibc requirement. I tried timer_create and timer_settimer, but the best I get from them is a 10ms resolution, smaller values seem to default to 10ms resolution. Getittimer and setitimer have a 10 ms resolution according to the manpage.

The only way to do this timer I can currently think of is to use clock_gettime with CLOCK_MONOTONIC in my main loop an test if a ms has passed, and if so to increase the counter (and then check if the various Events should fire).

Is there a better way to do this than to constantly query in the main loop? What is the recommended solution to this?

The language I am using is plain old c

Update
I am using a 2.6.26 Kernel. I know you can have it interrupt at 1kHz, and the POSIX timer_* functions then can be programmed to up to 1ms but that seems not to be reliable and I don't want to use that, because it may need a new kernel on some Systems. Some stock Kernel seem to still have the 100Hz configured. And I would need to detect that. The application may be run on something else than my System :)

I can not sleep for 1ms because there may be network events I have to react to.

How I resolved it Since it is not that important I simply declared that the global timer has a 100ms resolution. All events using their own timer have to set at least 100ms for timer expiration. I was more or less wondering if there would be a better way, hence the question.

Why I accepted the answer I think the answer from freespace best described why it is not really possible without a realtime Linux System.

Was it helpful?

Solution

Polling in the main loop isn't an answer either - your process might not get much CPU time, so more than 10ms will elapse before your code gets to run, rendering it moot.

10ms is about the standard timer resolution for most non-realtime operating systems (RTOS). But it is moot in a non-RTOS - the behaviour of the scheduler and dispatcher is going to greatly influence how quickly you can respond to a timer expiring. For example even suppose you had a sub 10ms resolution timer, you can't respond to the timer expiring if your code isn't running. Since you can't predict when your code is going to run, you can't respond to timer expiration accurately.

There is of course realtime linux kernels, see http://www.linuxdevices.com/articles/AT8073314981.html for a list. A RTOS offers facilities whereby you can get soft or hard guarantees about when your code is going to run. This is about the only way to reliably and accurately respond to timers expiring etc.

OTHER TIPS

To get 1ms resolution timers do what libevent does.

Organize your timers into a min-heap, that is, the top of the heap is the timer with the earliest expiry (absolute) time (a rb-tree would also work but with more overhead). Before calling select() or epoll() in your main event loop calculate the delta in milliseconds between the expiry time of the earliest timer and now. Use this delta as the timeout to select(). select() and epoll() timeouts have 1ms resolution.

I've got a timer resolution test that uses the mechanism explained above (but not libevent). The test measures the difference between the desired timer expiry time and its actual expiry of 1ms, 5ms and 10ms timers:

1000 deviation samples of  1msec timer: min=  -246115nsec max=  1143471nsec median=   -70775nsec avg=      901nsec stddev=    45570nsec
1000 deviation samples of  5msec timer: min=  -265280nsec max=   256260nsec median=  -252363nsec avg=     -195nsec stddev=    30933nsec
1000 deviation samples of 10msec timer: min=  -273119nsec max=   274045nsec median=   103471nsec avg=     -179nsec stddev=    31228nsec
1000 deviation samples of  1msec timer: min=  -144930nsec max=  1052379nsec median=  -109322nsec avg=     1000nsec stddev=    43545nsec
1000 deviation samples of  5msec timer: min= -1229446nsec max=  1230399nsec median=  1222761nsec avg=      724nsec stddev=   254466nsec
1000 deviation samples of 10msec timer: min= -1227580nsec max=  1227734nsec median=    47328nsec avg=      745nsec stddev=   173834nsec
1000 deviation samples of  1msec timer: min=  -222672nsec max=   228907nsec median=    63635nsec avg=       22nsec stddev=    29410nsec
1000 deviation samples of  5msec timer: min= -1302808nsec max=  1270006nsec median=  1251949nsec avg=     -222nsec stddev=   345944nsec
1000 deviation samples of 10msec timer: min= -1297724nsec max=  1298269nsec median=  1254351nsec avg=     -225nsec stddev=   374717nsec

The test ran as a real-time process on Fedora 13 kernel 2.6.34, the best achieved precision of 1ms timer was avg=22nsec stddev=29410nsec.

I'm not sure it's the best solution, but you might consider writing a small kernel module that uses the kernel high-res timers to do timing. Basically, you'd create a device file for which reads would only return on 1ms intervals.

An example of this type of approach is used in the Asterisk PBX, via the ztdummy module. If you google for ztdummy you can find the code that does this.

I think you'll have trouble achieving 1 ms precision with standard Linux even with constant querying in the main loop, because the kernel does not ensure your application will get CPU all the time. For example, you can be put to sleep for dozens of milliseconds because of preemptive multitasking and there's little you can do about it.

You might want to look into Real-Time Linux.

If you are targeting x86 platform you should check HPET timers. This is hardware timer with large precision. It must be supported by your motherbord (right now all of them support it) and your kernel should contains driver for it as well. I have used it few times without any problems and was able to achieve much better resolution than 1ms.

Here is some documentation and examples:

I seem to recall getting ok results with gettimeofday/usleep based polling -- I wasn't needing 1000 timers a second or anything, but I was needing good accuracy with the timing for ticks I did need -- my app was a MIDI drum machine controller, and I seem to remember getting sub-millisecond accuracy, which you need for a drum machine if you don't want it to sound like a very bad drummer (esp. counting MIDI's built-in latencies) -- iirc (it was 2005 so my memory is a bit fuzzy) I was getting within 200 microseconds of target times with usleep.

However, I was not running much else on the system. If you have a controlled environment you might be able to get away with a solution like that. If there's more going on the system (watch cron firing up updatedb, etc.) then things may fall apart.

Are you running on a Linux 2.4 kernel?

From VMware KB article #1420 (http://kb.vmware.com/kb/1420).

Linux guest operating systems keep time by counting timer interrupts. Unpatched 2.4 and earlier kernels program the virtual system timer to request clock interrupts at 100Hz (100 interrupts per second). 2.6 kernels, on the other hand, request interrupts at 1000Hz - ten times as often. Some 2.4 kernels modified by distribution vendors to contain 2.6 features also request 1000Hz interrupts, or in some cases, interrupts at other rates, such as 512Hz.

First, get the kernel source and compile it with an adjusted HZ parameter.

  • If HZ=1000, timer interrupts 1000 times per seconds. It is ok to use HZ=1000 for an i386 machine.
  • On an embedded machine, HZ might be limited to 100 or 200.

For good operation, PREEMPT_KERNEL option should be on. There are kernels which does not support this option properly. You can check them out by searching.

Recent kernels, i.e. 2.6.35.10, supports NO_HZ options, which turns on dynamic ticks. This means that there will be no timer ticks when in idle, but a timer tick will be generated at the specified moment.

There is a RT patch to the kernel, but hardware support is very limited.

Generally RTAI is an all killer solution to your problem, but its hardware support is very limited. However, good CNC controllers, like emc2, use RTAI for their clocking, maybe 5000 Hz, but it can be hard work to install it.

If you can, you could add hardware to generate pulses. That would make a system which can be adapted to any OS version.

Can you at least use nanosleep in your loop to sleep for 1ms? Or is that a glibc thing?

Update: Never mind, I see from the man page "it can take up to 10 ms longer than specified until the process becomes runnable again"

You don't need an RTOS for a simple real time application. All modern processors have General Purpose timers. Get a datasheet for whatever target CPU you are working on. Look in the kernel source, under the arch directory you will find processor specific source how to handle these timers.

There are two approaches you can take with this:

1) Your application is ONLY running your state machine, and nothing else. Linux is simply your "boot loader." Create a kernel object which installs a character device. On insertion into the kernel, set up your GP Timer to run continuously. You know the frequency it's operating at. Now, in the kernel, explicitly disable your watchdog. Now disable interrupts (hardware AND software) On a single-cpu Linux kernel, calling spin_lock() will accomplish this (never let go of it.) The CPU is YOURS. Busy loop, checking the value of the GPT until the required # of ticks have passed, when they have, set a value for the next timeout and enter your processing loop. Just make sure that the burst time for your code is under 1ms

2) A 2nd option. This assumes you are running a preemptive Linux kernel. Set up an unused a GPT along side your running OS. Now, set up an interrupt to fire some configurable margin BEFORE your 1ms timeout happens (say 50-75 uSec.) When the interrupt fires, you will immediately disable interrupts and spin waiting for 1ms window to occur, then entering your state machine and subsequently enabling interrupts on your wait OUT. This accounts for the fact that you are cooperating with OTHER things in the kernel which disable interrupts. This ASSUMES that there is no other kernel activity which locks out interrupts for a long time (more than 100us.) Now, you can MEASURE the accuracy of your firing event and make the window larger until it meets your need.

If instead you are trying to learn how RTOS's work...or if you are trying to solve a control problem with more than one real-time responsibility...then use an RTOS.

What about using "/dev/rtc0" (or "/dev/rtc") device and its related ioctl() interface? I think it offers an accurate timer counter. It is not possible to set the rate just to 1 ms, but to a close value or 1/1024sec (1024Hz), or to a higher frequency, like 8192Hz.

Licensed under: CC-BY-SA with attribution
Not affiliated with StackOverflow
scroll top