Question

I need to compute combinatorials (nCr) in Python but cannot find the function to do that in math, numpy or stat libraries. Something like a function of the type:

comb = calculate_combinations(n, r)

I need the number of possible combinations, not the actual combinations, so itertools.combinations does not interest me.

Finally, I want to avoid using factorials, as the numbers I'll be calculating the combinations for can get too big and the factorials are going to be monstrous.

This seems like a REALLY easy to answer question, however I am being drowned in questions about generating all the actual combinations, which is not what I want.

Was it helpful?

Solution

See scipy.special.comb (scipy.misc.comb in older versions of scipy). When exact is False, it uses the gammaln function to obtain good precision without taking much time. In the exact case it returns an arbitrary-precision integer, which might take a long time to compute.

OTHER TIPS

Why not write it yourself? It's a one-liner or such:

from operator import mul    # or mul=lambda x,y:x*y
from fractions import Fraction

def nCk(n,k): 
  return int( reduce(mul, (Fraction(n-i, i+1) for i in range(k)), 1) )

Test - printing Pascal's triangle:

>>> for n in range(17):
...     print ' '.join('%5d'%nCk(n,k) for k in range(n+1)).center(100)
...     
                                                   1                                                
                                                1     1                                             
                                             1     2     1                                          
                                          1     3     3     1                                       
                                       1     4     6     4     1                                    
                                    1     5    10    10     5     1                                 
                                 1     6    15    20    15     6     1                              
                              1     7    21    35    35    21     7     1                           
                           1     8    28    56    70    56    28     8     1                        
                        1     9    36    84   126   126    84    36     9     1                     
                     1    10    45   120   210   252   210   120    45    10     1                  
                  1    11    55   165   330   462   462   330   165    55    11     1               
               1    12    66   220   495   792   924   792   495   220    66    12     1            
            1    13    78   286   715  1287  1716  1716  1287   715   286    78    13     1         
         1    14    91   364  1001  2002  3003  3432  3003  2002  1001   364    91    14     1      
      1    15   105   455  1365  3003  5005  6435  6435  5005  3003  1365   455   105    15     1   
    1    16   120   560  1820  4368  8008 11440 12870 11440  8008  4368  1820   560   120    16     1
>>> 

PS. edited to replace int(round(reduce(mul, (float(n-i)/(i+1) for i in range(k)), 1))) with int(reduce(mul, (Fraction(n-i, i+1) for i in range(k)), 1)) so it won't err for big N/K

A quick search on google code gives (it uses formula from @Mark Byers's answer):

def choose(n, k):
    """
    A fast way to calculate binomial coefficients by Andrew Dalke (contrib).
    """
    if 0 <= k <= n:
        ntok = 1
        ktok = 1
        for t in xrange(1, min(k, n - k) + 1):
            ntok *= n
            ktok *= t
            n -= 1
        return ntok // ktok
    else:
        return 0

choose() is 10 times faster (tested on all 0 <= (n,k) < 1e3 pairs) than scipy.misc.comb() if you need an exact answer.

def comb(N,k): # from scipy.comb(), but MODIFIED!
    if (k > N) or (N < 0) or (k < 0):
        return 0L
    N,k = map(long,(N,k))
    top = N
    val = 1L
    while (top > (N-k)):
        val *= top
        top -= 1
    n = 1L
    while (n < k+1L):
        val /= n
        n += 1
    return val

If you want exact results and speed, try gmpy -- gmpy.comb should do exactly what you ask for, and it's pretty fast (of course, as gmpy's original author, I am biased;-).

If you want an exact result, use sympy.binomial. It seems to be the fastest method, hands down.

x = 1000000
y = 234050

%timeit scipy.misc.comb(x, y, exact=True)
1 loops, best of 3: 1min 27s per loop

%timeit gmpy.comb(x, y)
1 loops, best of 3: 1.97 s per loop

%timeit int(sympy.binomial(x, y))
100000 loops, best of 3: 5.06 µs per loop

A literal translation of the mathematical definition is quite adequate in a lot of cases (remembering that Python will automatically use big number arithmetic):

from math import factorial

def calculate_combinations(n, r):
    return factorial(n) // factorial(r) // factorial(n-r)

For some inputs I tested (e.g. n=1000 r=500) this was more than 10 times faster than the one liner reduce suggested in another (currently highest voted) answer. On the other hand, it is out-performed by the snippit provided by @J.F. Sebastian.

Here's another alternative. This one was originally written in C++, so it can be backported to C++ for a finite-precision integer (e.g. __int64). The advantage is (1) it involves only integer operations, and (2) it avoids bloating the integer value by doing successive pairs of multiplication and division. I've tested the result with Nas Banov's Pascal triangle, it gets the correct answer:

def choose(n,r):
  """Computes n! / (r! (n-r)!) exactly. Returns a python long int."""
  assert n >= 0
  assert 0 <= r <= n

  c = 1L
  denom = 1
  for (num,denom) in zip(xrange(n,n-r,-1), xrange(1,r+1,1)):
    c = (c * num) // denom
  return c

Rationale: To minimize the # of multiplications and divisions, we rewrite the expression as

    n!      n(n-1)...(n-r+1)
--------- = ----------------
 r!(n-r)!          r!

To avoid multiplication overflow as much as possible, we will evaluate in the following STRICT order, from left to right:

n / 1 * (n-1) / 2 * (n-2) / 3 * ... * (n-r+1) / r

We can show that integer arithmatic operated in this order is exact (i.e. no roundoff error).

Using dynamic programming, the time complexity is Θ(n*m) and space complexity Θ(m):

def binomial(n, k):
""" (int, int) -> int

         | c(n-1, k-1) + c(n-1, k), if 0 < k < n
c(n,k) = | 1                      , if n = k
         | 1                      , if k = 0

Precondition: n > k

>>> binomial(9, 2)
36
"""

c = [0] * (n + 1)
c[0] = 1
for i in range(1, n + 1):
    c[i] = 1
    j = i - 1
    while j > 0:
        c[j] += c[j - 1]
        j -= 1

return c[k]

If your program has an upper bound to n (say n <= N) and needs to repeatedly compute nCr (preferably for >>N times), using lru_cache can give you a huge performance boost:

from functools import lru_cache

@lru_cache(maxsize=None)
def nCr(n, r):
    return 1 if r == 0 or r == n else nCr(n - 1, r - 1) + nCr(n - 1, r)

Constructing the cache (which is done implicitly) takes up to O(N^2) time. Any subsequent calls to nCr will return in O(1).

You can write 2 simple functions that actually turns out to be about 5-8X faster than using scipy.special.comb. In fact, you don't need to import any extra packages, and the function is quite easily readable. The trick is to use memoization to store previously computed values, and using the definition of nCr

# create a memoization dict
memo = {}
def factorial(n):
    """
    Calculate the factorial of an input using memoization
    :param n: int
    :rtype value: int
    """
    if n in [1,0]:
        return 1
    if n in memo:
        return memo[n]
    value = n*fact(n-1)
    memo[n] = value
    return value

def ncr(n, k):
    """
    Choose k elements from a set of n elements - n must be larger than or equal to k
    :param n: int
    :param k: int
    :rtype: int
    """
    return factorial(n)/(factorial(k)*factorial(n-k))

If we compare times

from scipy.special import comb
%timeit comb(100,48)
>>> 100000 loops, best of 3: 6.78 µs per loop

%timeit ncr(100,48)
>>> 1000000 loops, best of 3: 1.39 µs per loop

The direct formula produces big integers when n is bigger than 20.

So, yet another response:

from math import factorial

binomial = lambda n,r: reduce(long.__mul__, range(n-r, n+1), 1L) // factorial(r)

short, quick and efficient.

It's pretty easy with sympy.

import sympy

comb = sympy.binomial(n, r)

Using only standard library distributed with Python:

import itertools

def nCk(n, k):
    return len(list(itertools.combinations(range(n), k)))

This is @killerT2333 code using the builtin memoization decorator.

from functools import lru_cache

@lru_cache()
def factorial(n):
    """
    Calculate the factorial of an input using memoization
    :param n: int
    :rtype value: int
    """
    return 1 if n in (1, 0) else n * factorial(n-1)

@lru_cache()
def ncr(n, k):
    """
    Choose k elements from a set of n elements,
    n must be greater than or equal to k.
    :param n: int
    :param k: int
    :rtype: int
    """
    return factorial(n) / (factorial(k) * factorial(n - k))

print(ncr(6, 3))

That's probably as fast as you can do it in pure python for reasonably large inputs:

def choose(n, k):
    if k == n: return 1
    if k > n: return 0
    d, q = max(k, n-k), min(k, n-k)
    num =  1
    for n in xrange(d+1, n+1): num *= n
    denom = 1
    for d in xrange(1, q+1): denom *= d
    return num / denom

This function is very optimazed.

def nCk(n,k):
    m=0
    if k==0:
        m=1
    if k==1:
        m=n
    if k>=2:
        num,dem,op1,op2=1,1,k,n
        while(op1>=1):
            num*=op2
            dem*=op1
            op1-=1
            op2-=1
        m=num//dem
    return m

Starting Python 3.8, the standard library now includes the math.comb function to compute the binomial coefficient:

math.comb(n, k)

which is the number of ways to choose k items from n items without repetition
n! / (k! (n - k)!):

import math
math.comb(10, 5) # 252
Licensed under: CC-BY-SA with attribution
Not affiliated with StackOverflow
scroll top