Pregunta

Tengo una lista de longitud arbitraria, y necesito dividirla en trozos de igual tamaño y operarla. Hay algunas formas obvias de hacer esto, como mantener un contador y dos listas, y cuando se llene la segunda lista, agréguela a la primera lista y vacíe la segunda lista para la siguiente ronda de datos, pero esto es potencialmente extremadamente costoso.

Me preguntaba si alguien tenía una buena solución para esto para listas de cualquier longitud, p. utilizando generadores.

Estaba buscando algo útil en itertools pero no pude encontrar nada obviamente útil. Sin embargo, podría haberlo perdido.

Pregunta relacionada: ¿Cuál es la forma más "pitónica" de iterar sobre una lista en fragmentos?

¿Fue útil?

Solución

Aquí hay un generador que produce los fragmentos que desea:

def chunks(l, n):
    """Yield successive n-sized chunks from l."""
    for i in range(0, len(l), n):
        yield l[i:i + n]

import pprint
pprint.pprint(list(chunks(range(10, 75), 10)))
[[10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
 [20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
 [30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
 [40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
 [50, 51, 52, 53, 54, 55, 56, 57, 58, 59],
 [60, 61, 62, 63, 64, 65, 66, 67, 68, 69],
 [70, 71, 72, 73, 74]]

Si usa Python 2, debe usar xrange () en lugar de range () :

def chunks(l, n):
    """Yield successive n-sized chunks from l."""
    for i in xrange(0, len(l), n):
        yield l[i:i + n]

También puede simplemente usar la comprensión de la lista en lugar de escribir una función, aunque es una buena idea encapsular operaciones como esta en funciones con nombre para que su código sea más fácil de entender. Python 3:

[l[i:i + n] for i in range(0, len(l), n)]

Versión de Python 2:

[l[i:i + n] for i in xrange(0, len(l), n)]

Otros consejos

Si quieres algo súper simple:

def chunks(l, n):
    n = max(1, n)
    return (l[i:i+n] for i in xrange(0, len(l), n))

Use range () en lugar de xrange () en el caso de Python 3.x

Directamente de la (antigua) documentación de Python (recetas para itertools):

from itertools import izip, chain, repeat

def grouper(n, iterable, padvalue=None):
    "grouper(3, 'abcdefg', 'x') --> ('a','b','c'), ('d','e','f'), ('g','x','x')"
    return izip(*[chain(iterable, repeat(padvalue, n-1))]*n)

La versión actual, según lo sugerido por J.F.Sebastian:

#from itertools import izip_longest as zip_longest # for Python 2.x
from itertools import zip_longest # for Python 3.x
#from six.moves import zip_longest # for both (uses the six compat library)

def grouper(n, iterable, padvalue=None):
    "grouper(3, 'abcdefg', 'x') --> ('a','b','c'), ('d','e','f'), ('g','x','x')"
    return zip_longest(*[iter(iterable)]*n, fillvalue=padvalue)

Creo que la máquina del tiempo de Guido funciona, funcionó, funcionará, habrá funcionado, estaba funcionando de nuevo.

Estas soluciones funcionan porque [iter (iterable)] * n (o el equivalente en la versión anterior) crea un iterador one , repetido n veces en la lista. izip_longest luego realiza efectivamente un round robin de " cada " iterador Debido a que este es el mismo iterador, cada llamada de este tipo avanza, lo que da como resultado que cada uno de estos zip-roundrobin genere una tupla de elementos n .

Sé que esto es un poco viejo, pero no sé por qué nadie mencionó numpy.array_split :

lst = range(50)
In [26]: np.array_split(lst,5)
Out[26]: 
[array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
 array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19]),
 array([20, 21, 22, 23, 24, 25, 26, 27, 28, 29]),
 array([30, 31, 32, 33, 34, 35, 36, 37, 38, 39]),
 array([40, 41, 42, 43, 44, 45, 46, 47, 48, 49])]

Me sorprende que nadie haya pensado en usar iter 's forma de dos argumentos :

from itertools import islice

def chunk(it, size):
    it = iter(it)
    return iter(lambda: tuple(islice(it, size)), ())

Demostración:

>>> list(chunk(range(14), 3))
[(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, 11), (12, 13)]

Esto funciona con cualquier iterable y produce una salida perezosa. Devuelve tuplas en lugar de iteradores, pero creo que tiene una cierta elegancia. Tampoco rellena; si desea relleno, una simple variación de lo anterior será suficiente:

from itertools import islice, chain, repeat

def chunk_pad(it, size, padval=None):
    it = chain(iter(it), repeat(padval))
    return iter(lambda: tuple(islice(it, size)), (padval,) * size)

Demostración:

>>> list(chunk_pad(range(14), 3))
[(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, 11), (12, 13, None)]
>>> list(chunk_pad(range(14), 3, 'a'))
[(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, 11), (12, 13, 'a')]

Al igual que las soluciones basadas en izip_longest , las almohadillas siempre anteriores. Hasta donde sé, no hay una receta de itertools de una o dos líneas para una función que opcionalmente rellena. Al combinar los dos enfoques anteriores, este se acerca bastante:

_no_padding = object()

def chunk(it, size, padval=_no_padding):
    if padval == _no_padding:
        it = iter(it)
        sentinel = ()
    else:
        it = chain(iter(it), repeat(padval))
        sentinel = (padval,) * size
    return iter(lambda: tuple(islice(it, size)), sentinel)

Demostración:

>>> list(chunk(range(14), 3))
[(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, 11), (12, 13)]
>>> list(chunk(range(14), 3, None))
[(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, 11), (12, 13, None)]
>>> list(chunk(range(14), 3, 'a'))
[(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, 11), (12, 13, 'a')]

Creo que este es el fragmento más corto propuesto que ofrece relleno opcional.

Como Tomasz Gandor observado , los dos fragmentos de relleno se detendrán inesperadamente si encuentran una secuencia larga de valores de relleno. Aquí hay una variación final que soluciona ese problema de manera razonable:

_no_padding = object()
def chunk(it, size, padval=_no_padding):
    it = iter(it)
    chunker = iter(lambda: tuple(islice(it, size)), ())
    if padval == _no_padding:
        yield from chunker
    else:
        for ch in chunker:
            yield ch if len(ch) == size else ch + (padval,) * (size - len(ch))

Demostración:

>>> list(chunk([1, 2, (), (), 5], 2))
[(1, 2), ((), ()), (5,)]
>>> list(chunk([1, 2, None, None, 5], 2, None))
[(1, 2), (None, None), (5, None)]

Aquí hay un generador que funciona en iterables arbitrarios:

def split_seq(iterable, size):
    it = iter(iterable)
    item = list(itertools.islice(it, size))
    while item:
        yield item
        item = list(itertools.islice(it, size))

Ejemplo:

>>> import pprint
>>> pprint.pprint(list(split_seq(xrange(75), 10)))
[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
 [10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
 [20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
 [30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
 [40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
 [50, 51, 52, 53, 54, 55, 56, 57, 58, 59],
 [60, 61, 62, 63, 64, 65, 66, 67, 68, 69],
 [70, 71, 72, 73, 74]]
def chunk(input, size):
    return map(None, *([iter(input)] * size))

Simple pero elegante

l = range(1, 1000)
print [l[x:x+10] for x in xrange(0, len(l), 10)]

o si lo prefiere:

chunks = lambda l, n: [l[x: x+n] for x in xrange(0, len(l), n)]
chunks(l, 10)

Vi la respuesta más asombrosa de Python-ish en un duplicado de esta pregunta:

from itertools import zip_longest

a = range(1, 16)
i = iter(a)
r = list(zip_longest(i, i, i))
>>> print(r)
[(1, 2, 3), (4, 5, 6), (7, 8, 9), (10, 11, 12), (13, 14, 15)]

Puede crear n-tuplas para cualquier n. Si a = range (1, 15) , el resultado será:

[(1, 2, 3), (4, 5, 6), (7, 8, 9), (10, 11, 12), (13, 14, None)]

Si la lista se divide en partes iguales, puede reemplazar zip_longest con zip , de lo contrario, el triplete (13, 14, Ninguno) estar perdido. Python 3 se usa arriba. Para Python 2, use izip_longest .

Crítica de otras respuestas aquí:

Ninguna de estas respuestas son trozos de tamaño uniforme, todos dejan un trozo runt al final, por lo que no están completamente equilibrados. Si estaba utilizando estas funciones para distribuir el trabajo, ha incorporado la posibilidad de que uno termine bien antes que los demás, por lo que se quedaría sin hacer nada mientras los demás continuaron trabajando duro.

Por ejemplo, la respuesta principal actual termina con:

[60, 61, 62, 63, 64, 65, 66, 67, 68, 69],
[70, 71, 72, 73, 74]]

¡Simplemente odio ese truco al final!

Otros, como list (mero (3, xrange (7))) y chunk (xrange (7), 3) ambos devuelven: [ (0, 1, 2), (3, 4, 5), (6, Ninguno, Ninguno)] . Los Ninguno son solo relleno y, en mi opinión, bastante poco elegantes. NO están fragmentando uniformemente los iterables.

¿Por qué no podemos dividirlos mejor?

Mis soluciones

Aquí hay una solución equilibrada, adaptada de una función que he usado en producción (Nota en Python 3 para reemplazar xrange con range ):

def baskets_from(items, maxbaskets=25):
    baskets = [[] for _ in xrange(maxbaskets)] # in Python 3 use range
    for i, item in enumerate(items):
        baskets[i % maxbaskets].append(item)
    return filter(None, baskets) 

Y creé un generador que hace lo mismo si lo pones en una lista:

def iter_baskets_from(items, maxbaskets=3):
    '''generates evenly balanced baskets from indexable iterable'''
    item_count = len(items)
    baskets = min(item_count, maxbaskets)
    for x_i in xrange(baskets):
        yield [items[y_i] for y_i in xrange(x_i, item_count, baskets)]

Y finalmente, como veo que todas las funciones anteriores devuelven elementos en un orden contiguo (como se les dio):

def iter_baskets_contiguous(items, maxbaskets=3, item_count=None):
    '''
    generates balanced baskets from iterable, contiguous contents
    provide item_count if providing a iterator that doesn't support len()
    '''
    item_count = item_count or len(items)
    baskets = min(item_count, maxbaskets)
    items = iter(items)
    floor = item_count // baskets 
    ceiling = floor + 1
    stepdown = item_count % baskets
    for x_i in xrange(baskets):
        length = ceiling if x_i < stepdown else floor
        yield [items.next() for _ in xrange(length)]

Salida

Para probarlos:

print(baskets_from(xrange(6), 8))
print(list(iter_baskets_from(xrange(6), 8)))
print(list(iter_baskets_contiguous(xrange(6), 8)))
print(baskets_from(xrange(22), 8))
print(list(iter_baskets_from(xrange(22), 8)))
print(list(iter_baskets_contiguous(xrange(22), 8)))
print(baskets_from('ABCDEFG', 3))
print(list(iter_baskets_from('ABCDEFG', 3)))
print(list(iter_baskets_contiguous('ABCDEFG', 3)))
print(baskets_from(xrange(26), 5))
print(list(iter_baskets_from(xrange(26), 5)))
print(list(iter_baskets_contiguous(xrange(26), 5)))

Que se imprime:

[[0], [1], [2], [3], [4], [5]]
[[0], [1], [2], [3], [4], [5]]
[[0], [1], [2], [3], [4], [5]]
[[0, 8, 16], [1, 9, 17], [2, 10, 18], [3, 11, 19], [4, 12, 20], [5, 13, 21], [6, 14], [7, 15]]
[[0, 8, 16], [1, 9, 17], [2, 10, 18], [3, 11, 19], [4, 12, 20], [5, 13, 21], [6, 14], [7, 15]]
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11], [12, 13, 14], [15, 16, 17], [18, 19], [20, 21]]
[['A', 'D', 'G'], ['B', 'E'], ['C', 'F']]
[['A', 'D', 'G'], ['B', 'E'], ['C', 'F']]
[['A', 'B', 'C'], ['D', 'E'], ['F', 'G']]
[[0, 5, 10, 15, 20, 25], [1, 6, 11, 16, 21], [2, 7, 12, 17, 22], [3, 8, 13, 18, 23], [4, 9, 14, 19, 24]]
[[0, 5, 10, 15, 20, 25], [1, 6, 11, 16, 21], [2, 7, 12, 17, 22], [3, 8, 13, 18, 23], [4, 9, 14, 19, 24]]
[[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15], [16, 17, 18, 19, 20], [21, 22, 23, 24, 25]]

Observe que el generador contiguo proporciona fragmentos en los mismos patrones de longitud que los otros dos, pero los elementos están todos en orden, y están divididos de manera tan uniforme como uno puede dividir una lista de elementos discretos.

Si conoce el tamaño de la lista:

def SplitList(mylist, chunk_size):
    return [mylist[offs:offs+chunk_size] for offs in range(0, len(mylist), chunk_size)]

Si no lo hace (un iterador):

def IterChunks(sequence, chunk_size):
    res = []
    for item in sequence:
        res.append(item)
        if len(res) >= chunk_size:
            yield res
            res = []
    if res:
        yield res  # yield the last, incomplete, portion

En el último caso, puede reformularse de una manera más bella si puede estar seguro de que la secuencia siempre contiene un número entero de fragmentos de un tamaño determinado (es decir, no hay un último fragmento incompleto).

Si tenía un tamaño de fragmento de 3, por ejemplo, podría hacer:

zip(*[iterable[i::3] for i in range(3)]) 

fuente: http://code.activestate.com/recipes/303060-group -a-list-into-sequential-n-tuples /

Lo usaría cuando mi tamaño de fragmento es un número fijo que puedo escribir, p. '3', y nunca cambiaría.

La biblioteca toolz tiene la función partición para esto:

from toolz.itertoolz.core import partition

list(partition(2, [1, 2, 3, 4]))
[(1, 2), (3, 4)]

Me gusta mucho la versión del documento de Python propuesta por tzot y J.F.Sebastian,  pero tiene dos defectos:

  • no es muy explícito
  • Generalmente no quiero un valor de relleno en el último fragmento

Estoy usando este mucho en mi código:

from itertools import islice

def chunks(n, iterable):
    iterable = iter(iterable)
    while True:
        yield tuple(islice(iterable, n)) or iterable.next()

ACTUALIZACIÓN: Una versión de fragmentos perezosos:

from itertools import chain, islice

def chunks(n, iterable):
   iterable = iter(iterable)
   while True:
       yield chain([next(iterable)], islice(iterable, n-1))

En este punto, creo que necesitamos un generador recursivo , por si acaso ...

En python 2:

def chunks(li, n):
    if li == []:
        return
    yield li[:n]
    for e in chunks(li[n:], n):
        yield e

En python 3:

def chunks(li, n):
    if li == []:
        return
    yield li[:n]
    yield from chunks(li[n:], n)

Además, en caso de una invasión alienígena masiva, un generador recursivo decorado podría ser útil:

def dec(gen):
    def new_gen(li, n):
        for e in gen(li, n):
            if e == []:
                return
            yield e
    return new_gen

@dec
def chunks(li, n):
    yield li[:n]
    for e in chunks(li[n:], n):
        yield e

También puede usar la función get_chunks de utilspie biblioteca como:

>>> from utilspie import iterutils
>>> a = [1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> list(iterutils.get_chunks(a, 5))
[[1, 2, 3, 4, 5], [6, 7, 8, 9]]

Puede instalar utilspie a través de pip:

sudo pip install utilspie

Descargo de responsabilidad: soy el creador de utilspie library .

Tenía curiosidad sobre el rendimiento de diferentes enfoques y aquí está:

Probado en Python 3.5.1

import time
batch_size = 7
arr_len = 298937

#---------slice-------------

print("\r\nslice")
start = time.time()
arr = [i for i in range(0, arr_len)]
while True:
    if not arr:
        break

    tmp = arr[0:batch_size]
    arr = arr[batch_size:-1]
print(time.time() - start)

#-----------index-----------

print("\r\nindex")
arr = [i for i in range(0, arr_len)]
start = time.time()
for i in range(0, round(len(arr) / batch_size + 1)):
    tmp = arr[batch_size * i : batch_size * (i + 1)]
print(time.time() - start)

#----------batches 1------------

def batch(iterable, n=1):
    l = len(iterable)
    for ndx in range(0, l, n):
        yield iterable[ndx:min(ndx + n, l)]

print("\r\nbatches 1")
arr = [i for i in range(0, arr_len)]
start = time.time()
for x in batch(arr, batch_size):
    tmp = x
print(time.time() - start)

#----------batches 2------------

from itertools import islice, chain

def batch(iterable, size):
    sourceiter = iter(iterable)
    while True:
        batchiter = islice(sourceiter, size)
        yield chain([next(batchiter)], batchiter)


print("\r\nbatches 2")
arr = [i for i in range(0, arr_len)]
start = time.time()
for x in batch(arr, batch_size):
    tmp = x
print(time.time() - start)

#---------chunks-------------
def chunks(l, n):
    """Yield successive n-sized chunks from l."""
    for i in range(0, len(l), n):
        yield l[i:i + n]
print("\r\nchunks")
arr = [i for i in range(0, arr_len)]
start = time.time()
for x in chunks(arr, batch_size):
    tmp = x
print(time.time() - start)

#-----------grouper-----------

from itertools import zip_longest # for Python 3.x
#from six.moves import zip_longest # for both (uses the six compat library)

def grouper(iterable, n, padvalue=None):
    "grouper(3, 'abcdefg', 'x') --> ('a','b','c'), ('d','e','f'), ('g','x','x')"
    return zip_longest(*[iter(iterable)]*n, fillvalue=padvalue)

arr = [i for i in range(0, arr_len)]
print("\r\ngrouper")
start = time.time()
for x in grouper(arr, batch_size):
    tmp = x
print(time.time() - start)

Resultados :

slice
31.18285083770752

index
0.02184295654296875

batches 1
0.03503894805908203

batches 2
0.22681021690368652

chunks
0.019841909408569336

grouper
0.006506919860839844
[AA[i:i+SS] for i in range(len(AA))[::SS]]

Donde AA es una matriz, SS es un tamaño de fragmento. Por ejemplo:

>>> AA=range(10,21);SS=3
>>> [AA[i:i+SS] for i in range(len(AA))[::SS]]
[[10, 11, 12], [13, 14, 15], [16, 17, 18], [19, 20]]
# or [range(10, 13), range(13, 16), range(16, 19), range(19, 21)] in py3

código:

def split_list(the_list, chunk_size):
    result_list = []
    while the_list:
        result_list.append(the_list[:chunk_size])
        the_list = the_list[chunk_size:]
    return result_list

a_list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

print split_list(a_list, 3)

resultado:

[[1, 2, 3], [4, 5, 6], [7, 8, 9], [10]]

je, versión de una línea

In [48]: chunk = lambda ulist, step:  map(lambda i: ulist[i:i+step],  xrange(0, len(ulist), step))

In [49]: chunk(range(1,100), 10)
Out[49]: 
[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
 [11, 12, 13, 14, 15, 16, 17, 18, 19, 20],
 [21, 22, 23, 24, 25, 26, 27, 28, 29, 30],
 [31, 32, 33, 34, 35, 36, 37, 38, 39, 40],
 [41, 42, 43, 44, 45, 46, 47, 48, 49, 50],
 [51, 52, 53, 54, 55, 56, 57, 58, 59, 60],
 [61, 62, 63, 64, 65, 66, 67, 68, 69, 70],
 [71, 72, 73, 74, 75, 76, 77, 78, 79, 80],
 [81, 82, 83, 84, 85, 86, 87, 88, 89, 90],
 [91, 92, 93, 94, 95, 96, 97, 98, 99]]
def split_seq(seq, num_pieces):
    start = 0
    for i in xrange(num_pieces):
        stop = start + len(seq[i::num_pieces])
        yield seq[start:stop]
        start = stop

uso:

seq = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

for seq in split_seq(seq, 3):
    print seq

Otra versión más explícita.

def chunkList(initialList, chunkSize):
    """
    This function chunks a list into sub lists 
    that have a length equals to chunkSize.

    Example:
    lst = [3, 4, 9, 7, 1, 1, 2, 3]
    print(chunkList(lst, 3)) 
    returns
    [[3, 4, 9], [7, 1, 1], [2, 3]]
    """
    finalList = []
    for i in range(0, len(initialList), chunkSize):
        finalList.append(initialList[i:i+chunkSize])
    return finalList

Sin llamar a len (), lo cual es bueno para listas grandes:

def splitter(l, n):
    i = 0
    chunk = l[:n]
    while chunk:
        yield chunk
        i += n
        chunk = l[i:i+n]

Y esto es para iterables:

def isplitter(l, n):
    l = iter(l)
    chunk = list(islice(l, n))
    while chunk:
        yield chunk
        chunk = list(islice(l, n))

El sabor funcional de lo anterior:

def isplitter2(l, n):
    return takewhile(bool,
                     (tuple(islice(start, n))
                            for start in repeat(iter(l))))

O:

def chunks_gen_sentinel(n, seq):
    continuous_slices = imap(islice, repeat(iter(seq)), repeat(0), repeat(n))
    return iter(imap(tuple, continuous_slices).next,())

O:

def chunks_gen_filter(n, seq):
    continuous_slices = imap(islice, repeat(iter(seq)), repeat(0), repeat(n))
    return takewhile(bool,imap(tuple, continuous_slices))

Una solución más

def make_chunks(data, chunk_size): 
    while data:
        chunk, data = data[:chunk_size], data[chunk_size:]
        yield chunk

>>> for chunk in make_chunks([1, 2, 3, 4, 5, 6, 7], 2):
...     print chunk
... 
[1, 2]
[3, 4]
[5, 6]
[7]
>>> 

Considere usar matplotlib.cbook piezas

por ejemplo:

import matplotlib.cbook as cbook
segments = cbook.pieces(np.arange(20), 3)
for s in segments:
     print s

Consulte esta referencia

>>> orange = range(1, 1001)
>>> otuples = list( zip(*[iter(orange)]*10))
>>> print(otuples)
[(1, 2, 3, 4, 5, 6, 7, 8, 9, 10), ... (991, 992, 993, 994, 995, 996, 997, 998, 999, 1000)]
>>> olist = [list(i) for i in otuples]
>>> print(olist)
[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10], ..., [991, 992, 993, 994, 995, 996, 997, 998, 999, 1000]]
>>> 

Python3

a = [1, 2, 3, 4, 5, 6, 7, 8, 9]
CHUNK = 4
[a[i*CHUNK:(i+1)*CHUNK] for i in xrange((len(a) + CHUNK - 1) / CHUNK )]

En este punto, creo que necesitamos la función obligatoria anónima recursiva.

Y = lambda f: (lambda x: x(x))(lambda y: f(lambda *args: y(y)(*args)))
chunks = Y(lambda f: lambda n: [n[0][:n[1]]] + f((n[0][n[1]:], n[1])) if len(n[0]) > 0 else [])

Ya que todos aquí están hablando de iteradores. boltons tiene un método perfecto para eso, llamado iterutils.chunked_iter .

from boltons import iterutils

list(iterutils.chunked_iter(list(range(50)), 11))

Salida:

[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
 [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21],
 [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32],
 [33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43],
 [44, 45, 46, 47, 48, 49]]

Pero si no quiere ser misericordioso con la memoria, puede usar el método antiguo y almacenar la list completa en primer lugar con iterutils.chunked .

Aquí hay una lista de enfoques adicionales:

Dada

import itertools as it
import collections as ct

import more_itertools as mit


iterable = range(11)
n = 3

Código

La biblioteca estándar

list(it.zip_longest(*[iter(iterable)] * n))
# [(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, None)]

d = {}
for i, x in enumerate(iterable):
    d.setdefault(i//n, []).append(x)

list(d.values())
# [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10]]

dd = ct.defaultdict(list)
for i, x in enumerate(iterable):
    dd[i//n].append(x)

list(dd.values())
# [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10]]

more_itertools +

list(mit.chunked(iterable, n))
# [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10]]

list(mit.sliced(iterable, n))
# [range(0, 3), range(3, 6), range(6, 9), range(9, 11)]

list(mit.grouper(n, iterable))
# [(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, None)]

list(mit.windowed(iterable, len(iterable)//n, step=n))
# [(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, None)]

Referencias

+ Una biblioteca de terceros que implementa recetas de itertools y más. > pip install more_itertools

Licenciado bajo: CC-BY-SA con atribución
No afiliado a StackOverflow
scroll top