Pregunta

A través de tratar de explicar el problema de Monty Hall a un amigo durante la clase de ayer, terminamos codificarla en Python para demostrar que si siempre swap, que va a ganar 2/3 veces. Se nos ocurrió esto:

import random as r

#iterations = int(raw_input("How many iterations? >> "))
iterations = 100000

doors = ["goat", "goat", "car"]
wins = 0.0
losses = 0.0

for i in range(iterations):
    n = r.randrange(0,3)

    choice = doors[n]
    if n == 0:
        #print "You chose door 1."
        #print "Monty opens door 2. There is a goat behind this door."
        #print "You swapped to door 3."
        wins += 1
        #print "You won a " + doors[2] + "\n"
    elif n == 1:
        #print "You chose door 2."
        #print "Monty opens door 1. There is a goat behind this door."
        #print "You swapped to door 3."
        wins += 1
        #print "You won a " + doors[2] + "\n"
    elif n == 2:
        #print "You chose door 3."
        #print "Monty opens door 2. There is a goat behind this door."
        #print "You swapped to door 1."
        losses += 1
        #print "You won a " + doors[0] + "\n"
    else:
        print "You screwed up"

percentage = (wins/iterations) * 100
print "Wins: " + str(wins)
print "Losses: " + str(losses)
print "You won " + str(percentage) + "% of the time"

Mi amigo pensó que era una buena manera de hacer las cosas (y es una buena simulación para ello), pero tengo mis dudas y preocupaciones. ¿Es realmente lo suficientemente aleatoria?

El problema que tengo con él es que las todas las opciones están un poco difícil codificadas en.

¿Es una buena o mala 'simulación' para el problema de Monty Hall? ¿Por qué?

¿Se puede llegar a una mejor versión?

¿Fue útil?

Solución

Su solución está muy bien, pero si quieres una simulación más estricta de los problemas y se planteaba (y algo de Python de mayor calidad ;-), trate de:

import random

iterations = 100000

doors = ["goat"] * 2 + ["car"]
change_wins = 0
change_loses = 0

for i in xrange(iterations):
    random.shuffle(doors)
    # you pick door n:
    n = random.randrange(3)
    # monty picks door k, k!=n and doors[k]!="car"
    sequence = range(3)
    random.shuffle(sequence)
    for k in sequence:
        if k == n or doors[k] == "car":
            continue
    # now if you change, you lose iff doors[n]=="car"
    if doors[n] == "car":
        change_loses += 1
    else:
        change_wins += 1

print "Changing has %s wins and %s losses" % (change_wins, change_loses)
perc = (100.0 * change_wins) / (change_wins + change_loses)
print "IOW, by changing you win %.1f%% of the time" % perc

una salida típica es:

Changing has 66721 wins and 33279 losses
IOW, by changing you win 66.7% of the time

Otros consejos

Usted ha mencionado que todas las opciones están codificados en. Pero si se mira de cerca, se dará cuenta de que lo que usted piensa que son 'elecciones' en realidad no son opciones en absoluto. La decisión de Monty es sin pérdida de generalidad, ya que él elige siempre la puerta con la cabra detrás de él. Su intercambio siempre está determinado por lo elige Monty, y puesto que la "elección" de Monty en realidad no era una opción, ni es suya. Su simulación da los resultados correctos ..

Me gusta algo como esto.


#!/usr/bin/python                                                                                                            
import random
CAR   = 1
GOAT  = 0

def one_trial( doors, switch=False ):
    """One trial of the Monty Hall contest."""

    random.shuffle( doors )
    first_choice = doors.pop( )
    if switch==False:
        return first_choice
    elif doors.__contains__(CAR):
        return CAR
    else:
        return GOAT


def n_trials( switch=False, n=10 ):
    """Play the game N times and return some stats."""
    wins = 0
    for n in xrange(n):
        doors = [CAR, GOAT, GOAT]
        wins += one_trial( doors, switch=switch )

    print "won:", wins, "lost:", (n-wins), "avg:", (float(wins)/float(n))


if __name__=="__main__":
    import sys
    n_trials( switch=eval(sys.argv[1]), n=int(sys.argv[2]) )

$ ./montyhall.py True 10000
won: 6744 lost: 3255 avg: 0.674467446745

Yo no había oído hablar del problema de Monty Hall antes de que me encontré con esta pregunta. Me ha parecido interesante, por lo que he leído sobre él y creé un c # simulación. Es un poco torpe, ya que simula el juego-espectáculo y no sólo el problema.

publiqué la fuente y la liberación en CodePlex:

http://montyhall.codeplex.com

Aquí está mi versión ...

import random

wins = 0

for n in range(1000):

    doors = [1, 2, 3]

    carDoor     = random.choice(doors)
    playerDoor  = random.choice(doors)
    hostDoor    = random.choice(list(set(doors) - set([carDoor, playerDoor])))

    # To stick, just comment out the next line.
    (playerDoor, ) = set(doors) - set([playerDoor, hostDoor]) # Player swaps doors.

    if playerDoor == carDoor:
        wins += 1

print str(round(wins / float(n) * 100, 2)) + '%'

Esta es una versión interactiva:

from random import shuffle, choice
cars,goats,iters= 0, 0, 100
for i in range(iters):
    doors = ['goat A', 'goat B', 'car']
    shuffle(doors)
    moderator_door = 'car'
    #Turn 1:
    selected_door = choice(doors)
    print selected_door
    doors.remove(selected_door)
    print 'You have selected a door with an unknown object'
    #Turn 2:
    while moderator_door == 'car':
        moderator_door = choice(doors)
    doors.remove(moderator_door)
    print 'Moderator has opened a door with ', moderator_door
    #Turn 3:
    decision=raw_input('Wanna change your door? [yn]')
    if decision=='y':
        prise = doors[0]
        print 'You have a door with ', prise
    elif decision=='n':
        prise = selected_door
        print 'You have a door with ', prise
    else:
        prise = 'ERROR'
        iters += 1
        print 'ERROR:unknown command'
    if prise == 'car':
        cars += 1
    elif prise != 'ERROR':
        goats += 1
print '==============================='
print '          RESULTS              '
print '==============================='
print 'Goats:', goats
print 'Cars :', cars

Mi solución con la lista de comprensión para simular el problema

from random import randint

N = 1000

def simulate(N):

    car_gate=[randint(1,3) for x in range(N)]
    gate_sel=[randint(1,3) for x in range(N)]

    score = sum([True if car_gate[i] == gate_sel[i] or ([posible_gate for posible_gate in [1,2,3] if posible_gate != gate_sel[i]][randint(0,1)] == car_gate[i]) else False for i in range(N)])

    return 'you win %s of the time when you change your selection.' % (float(score) / float(N))

Simular impresión (N)

No muestra de la mina

# -*- coding: utf-8 -*-
#!/usr/bin/python -Ou
# Written by kocmuk.ru, 2008
import random

num = 10000  # number of games to play
win = 0      # init win count if donot change our first choice

for i in range(1, num):                            # play "num" games
    if random.randint(1,3) == random.randint(1,3): # if win at first choice 
        win +=1                                    # increasing win count

print "I donot change first choice and win:", win, " games"   
print "I change initial choice and win:", num-win, " games" # looses of "not_change_first_choice are wins if changing

Me pareció que era la forma más intuitiva de resolver el problema.

import random

# game_show will return True/False if the participant wins/loses the car:
def game_show(knows_bayes):

    doors = [i for i in range(3)]

    # Let the car be behind this door
    car = random.choice(doors)

    # The participant chooses this door..
    choice = random.choice(doors)

    # ..so the host opens another (random) door with no car behind it
    open_door = random.choice([i for i in doors if i not in [car, choice]])

    # If the participant knows_bayes she will switch doors now
    if knows_bayes:
        choice = [i for i in doors if i not in [choice, open_door]][0]

    # Did the participant win a car?
    if choice == car:
        return True
    else:
        return False

# Let us run the game_show() for two participants. One knows_bayes and the other does not.
wins = [0, 0]
runs = 100000
for x in range(0, runs):
    if game_show(True):
        wins[0] += 1
    if game_show(False):
        wins[1] += 1

print "If the participant knows_bayes she wins %d %% of the time." % (float(wins[0])/runs*100)
print "If the participant does NOT knows_bayes she wins %d %% of the time." % (float(wins[1])/runs*100)

Esto da salida a algo así como

If the participant knows_bayes she wins 66 % of the time.
If the participant does NOT knows_bayes she wins 33 % of the time.

Leer un capítulo sobre el famoso problema de Monty Hall. Esta es mi solución.

import random

def one_round():
    doors = [1,1,0] # 1==goat, 0=car
    random.shuffle(doors) # shuffle doors
    choice = random.randint(0,2) 
    return doors[choice] 
    #If a goat is chosen, it means the player loses if he/she does not change.
    #This method returns if the player wins or loses if he/she changes. win = 1, lose = 0

def hall():
    change_wins = 0
    N = 10000
    for index in range(0,N):
        change_wins +=  one_round()
    print change_wins

hall()

Sin embargo, otra "prueba", esta vez con Python 3. Tenga en cuenta el uso de generadores para seleccionar 1), que abre la puerta Monty, y 2) que la puerta de los interruptores jugador a.

import random

items = ['goat', 'goat', 'car']
num_trials = 100000
num_wins = 0

for trial in range(num_trials):
    random.shuffle(items)
    player = random.randrange(3)
    monty = next(i for i, v in enumerate(items) if i != player and v != 'car')
    player = next(x for x in range(3) if x not in (player, monty))
    if items[player] == 'car':
        num_wins += 1

print('{}/{} = {}'.format(num_wins, num_trials, num_wins / num_trials))

Monty nunca se abre la puerta con el coche - que es el punto central de la serie (que no es su amigo un tiene conocimiento de lo que hay detrás de cada puerta)

Otro ejemplo de código está disponible en: http://standardwisdom.com/ softwarejournal / código-muestras / monty-hall-python /

El código es un poco más largo y no puede utilizar algunas de las características interesantes de Python, pero espero que sea bien legible. Se utiliza Python precisamente porque no tenía ninguna experiencia en ella, así que la regeneración es de agradecer.

Aquí es diferente variante que me parece más intuitiva. Esperamos que esto ayude!

import random

class MontyHall():
    """A Monty Hall game simulator."""
    def __init__(self):
        self.doors = ['Door #1', 'Door #2', 'Door #3']
        self.prize_door = random.choice(self.doors)
        self.contestant_choice = ""
        self.monty_show = ""
        self.contestant_switch = ""
        self.contestant_final_choice = ""
        self.outcome = ""

    def Contestant_Chooses(self):
        self.contestant_choice = random.choice(self.doors)

    def Monty_Shows(self):
        monty_choices = [door for door in self.doors if door not in [self.contestant_choice, self.prize_door]]
        self.monty_show = random.choice(monty_choices)

    def Contestant_Revises(self):
        self.contestant_switch = random.choice([True, False])
        if self.contestant_switch == True:
            self.contestant_final_choice = [door for door in self.doors if door not in [self.contestant_choice, self.monty_show]][0]
        else:
            self.contestant_final_choice = self.contestant_choice

    def Score(self):
        if self.contestant_final_choice == self.prize_door:
            self.outcome = "Win"
        else:
            self.outcome = "Lose"

    def _ShowState(self):
        print "-" * 50
        print "Doors                    %s" % self.doors
        print "Prize Door               %s" % self.prize_door
        print "Contestant Choice        %s" % self.contestant_choice
        print "Monty Show               %s" % self.monty_show
        print "Contestant Switch        %s" % self.contestant_switch
        print "Contestant Final Choice  %s" % self.contestant_final_choice
        print "Outcome                  %s" % self.outcome
        print "-" * 50



Switch_Wins = 0
NoSwitch_Wins = 0
Switch_Lose = 0
NoSwitch_Lose = 0

for x in range(100000):
    game = MontyHall()
    game.Contestant_Chooses()
    game.Monty_Shows()
    game.Contestant_Revises()
    game.Score()
    # Tally Up the Scores
    if game.contestant_switch  and game.outcome == "Win":  Switch_Wins = Switch_Wins + 1
    if not(game.contestant_switch) and game.outcome == "Win":  NoSwitch_Wins = NoSwitch_Wins + 1
    if game.contestant_switch  and game.outcome == "Lose": Switch_Lose = Switch_Lose + 1
    if not(game.contestant_switch) and game.outcome == "Lose": NoSwitch_Lose = NoSwitch_Lose + 1

print Switch_Wins * 1.0 / (Switch_Wins + Switch_Lose)
print NoSwitch_Wins * 1.0 / (NoSwitch_Wins + NoSwitch_Lose)

El aprendizaje sigue siendo el mismo, que la conmutación aumenta sus posibilidades de ganar, ,665025416127 vs ,33554730611 de la carrera anterior.

Aquí hay una que hice anteriormente:

import random

def game():
    """
    Set up three doors, one randomly with a car behind and two with
    goats behind. Choose a door randomly, then the presenter takes away
    one of the goats. Return the outcome based on whether you stuck with
    your original choice or switched to the other remaining closed door.
    """
    # Neither stick or switch has won yet, so set them both to False
    stick = switch = False
    # Set all of the doors to goats (zeroes)
    doors = [ 0, 0, 0 ]
    # Randomly change one of the goats for a car (one)
    doors[random.randint(0, 2)] = 1
    # Randomly choose one of the doors out of the three
    choice = doors[random.randint(0, 2)]
    # If our choice was a car (a one)
    if choice == 1:
        # Then stick wins
        stick = True
    else:
        # Otherwise, because the presenter would take away the other
        # goat, switching would always win.
        switch = True
    return (stick, switch)

También tenía código para ejecutar el juego muchas veces, y almacena este y la salida de la muestra rel="nofollow"> href="https://bitbucket.org/flyte/monty-hall-problem" repostory.

Aquí está mi solución al problema MontyHall implementado en Python.

Esta solución hace uso de numpy para la velocidad, sino que también le permite cambiar el número de puertas.

def montyhall(Trials:"Number of trials",Doors:"Amount of doors",P:"Output debug"):
    N = Trials # the amount of trial
    DoorSize = Doors+1
    Answer = (nprand.randint(1,DoorSize,N))

    OtherDoor = (nprand.randint(1,DoorSize,N))

    UserDoorChoice = (nprand.randint(1,DoorSize,N))

    # this will generate a second door that is not the user's selected door
    C = np.where( (UserDoorChoice==OtherDoor)>0 )[0]
    while (len(C)>0):
        OtherDoor[C] = nprand.randint(1,DoorSize,len(C))
        C = np.where( (UserDoorChoice==OtherDoor)>0 )[0]

    # place the car as the other choice for when the user got it wrong
    D = np.where( (UserDoorChoice!=Answer)>0 )[0]
    OtherDoor[D] = Answer[D]

    '''
    IfUserStays = 0
    IfUserChanges = 0
    for n in range(0,N):
        IfUserStays += 1 if Answer[n]==UserDoorChoice[n] else 0
        IfUserChanges += 1 if Answer[n]==OtherDoor[n] else 0
    '''
    IfUserStays = float(len( np.where((Answer==UserDoorChoice)>0)[0] ))
    IfUserChanges = float(len( np.where((Answer==OtherDoor)>0)[0] ))

    if P:
        print("Answer        ="+str(Answer))
        print("Other         ="+str(OtherDoor))
        print("UserDoorChoice="+str(UserDoorChoice))
        print("OtherDoor     ="+str(OtherDoor))
        print("results")
        print("UserDoorChoice="+str(UserDoorChoice==Answer)+" n="+str(IfUserStays)+" r="+str(IfUserStays/N))
        print("OtherDoor     ="+str(OtherDoor==Answer)+" n="+str(IfUserChanges)+" r="+str(IfUserChanges/N))

    return IfUserStays/N, IfUserChanges/N

Me acabo de enterar que la proporción mundial de ganar es de 50% y la proporción de perder es 50% ... Es la forma en la proporción en ganar o perder en base a la última opción seleccionada.

  • % Wins (permanecer): 16,692
  • % Wins (conmutación): 33.525
  • % Pérdidas (permanecer): 33,249
  • % Pérdidas (conmutación): 16.534

Aquí está mi código, que difiere de la suya con los comentarios + comentadas para que pueda ejecutar con pequeñas iteraciones:

import random as r

#iterations = int(raw_input("How many iterations? >> "))
iterations = 100000

doors = ["goat", "goat", "car"]
wins_staying =  0
wins_switching = 0  
losses_staying =  0
losses_switching = 0  



for i in range(iterations):
    # Shuffle the options
    r.shuffle(doors)
    # print("Doors configuration: ", doors)

    # Host will always know where the car is 
    car_option = doors.index("car")
    # print("car is in Option: ", car_option)

    # We set the options for the user
    available_options = [0, 1 , 2]

    # The user selects an option
    user_option = r.choice(available_options)
    # print("User option is: ", user_option)

    # We remove an option
    if(user_option != car_option ) :
        # In the case the door is a goat door on the user
        # we just leave the car door and the user door
        available_options = [user_option, car_option]
    else:
        # In the case the door is the car door 
        # we try to get one random door to keep
        available_options.remove(available_options[car_option])
        goat_option = r.choice(available_options)
        available_options = [goat_option, car_option]


    new_user_option = r.choice(available_options)
    # print("User final decision is: ", new_user_option)

    if new_user_option == car_option :
        if(new_user_option == user_option) :
            wins_staying += 1
        else :
            wins_switching += 1    
    else :
        if(new_user_option == user_option) :
            losses_staying += 1
        else :
            losses_switching += 1 


print("%Wins (staying): " + str(wins_staying / iterations * 100))
print("%Wins (switching): " + str(wins_switching / iterations * 100))
print("%Losses (staying) : " + str(losses_staying / iterations * 100))
print("%Losses (switching) : " + str(losses_switching / iterations * 100))
scroll top