Pregunta

Alguien sabe de algún buen ejemplo de una sencilla aplicación BTree en Javascript? Tengo un montón de "cosas" que llega al azar, y quiero insertar cada uno de manera eficiente.

En última instancia, cada uno obtendrá nueva insertada en el DOM basado en donde termina arriba en el árbol.

puedo código esto desde cero, pero preferiría no reinventar cualquier ruedas.

gracias

¿Fue útil?

Otros consejos

Si importa, me encontré con que el almacenamiento de este tipo de datos como un árbol literal era menos eficiente de almacenarla como una matriz ya ordenados y haciendo una búsqueda binaria en la matriz para empalmar elementos / inserción. JavaScript creación de objetos no es libre, por lo visto.

También está el viejo codificar-un-árbol-en-un-array truco:

[5, 3, 7, 1, null, 6, 9, null, null, null, null, null, null] 

es el mismo que

      5
     / \
    3   7
   /   / \
  1   6   9

es decir. niños (N [i]) = N [2i + 1], N [2i + 2]. No sé si es que realmente le da ninguna victoria en JavaScript.

Si intenta salir algunas alternativas para el árbol binario, ¿podría enviar sus hallazgos aquí? :)

https://gist.github.com/alexhawkins/f993569424789f3be5db

function BinarySearchTree() {
    this.root = null;
}

BinarySearchTree.prototype.makeNode = function(value) {
    var node = {};
    node.value = value;
    node.left = null;
    node.right = null;
    return node;
};

BinarySearchTree.prototype.add = function(value) {
    var currentNode = this.makeNode(value);
    if (!this.root) {
        this.root = currentNode;
    } else {
        this.insert(currentNode);
    }
    return this;
};

BinarySearchTree.prototype.insert = function(currentNode) {
    var value = currentNode.value;
    var traverse = function(node) {
        //if value is equal to the value of the node, ignore
        //and exit function since we don't want duplicates
        if (value === node.value) {
            return;
        } else if (value > node.value) {
            if (!node.right) {
                node.right = currentNode;
                return;
            } else
                traverse(node.right);
        } else if (value < node.value) {
            if (!node.left) {
                node.left = currentNode;
                return;
            } else
                traverse(node.left);
        }
    };
    traverse(this.root);
};


BinarySearchTree.prototype.contains = function(value) {
    var node = this.root;
    var traverse = function(node) {
        if (!node) return false;
        if (value === node.value) {
            return true;
        } else if (value > node.value) {
            return traverse(node.right);
        } else if (value < node.value) {
            return traverse(node.left);
        }
    };
    return traverse(node);
};


/* BREADTH FIRST TREE TRAVERSAL */

/* Breadth First Search finds all the siblings at each level
   in order from left to right or from right to left. */

BinarySearchTree.prototype.breadthFirstLTR = function() {
    var node = this.root;
    var queue = [node];
    var result = [];
    while (node = queue.shift()) {
        result.push(node.value);
        node.left && queue.push(node.left);
        node.right && queue.push(node.right);
    }
    return result;
};


BinarySearchTree.prototype.breadthFirstRTL = function() {
    var node = this.root;
    var queue = [node];
    var result = [];
    while (node = queue.shift()) {
        result.push(node.value);
        node.right && queue.push(node.right);
        node.left && queue.push(node.left);
    }
    return result;
};

/*DEPTH FIRST TRAVERSALS*/

/*  preOrder is a type of depth-first traversal that tries 
    togo deeper in the tree before exploring siblings. It 
    returns the shallowest descendants first.

    1) Display the data part of root element (or current element)
    2) Traverse the left subtree by recursively calling the pre-order function.
    3) Traverse the right subtree by recursively calling the pre-order function. */

BinarySearchTree.prototype.preOrder = function() {
    var result = [];
    var node = this.root;
    var traverse = function(node) {
        result.push(node.value);
        node.left && traverse(node.left);
        node.right && traverse(node.right);
    };
    traverse(node);
    return result;
};

/*  inOrder traversal is a type of depth-first traversal
    that also tries to go deeper in the tree before exploring siblings.
    however, it returns the deepest descendents first

    1) Traverse the left subtree by recursively calling the pre-order function.
    2) Display the data part of root element (or current element)
    3) Traverse the right subtree by recursively calling the pre-order function. */

BinarySearchTree.prototype.inOrder = function() {
    var result = [];
    var node = this.root;
    var traverse = function(node) {
        node.left && traverse(node.left);
        result.push(node.value);
        node.right && traverse(node.right);
    };
    traverse(node);
    return result;
};

/*  postOrder traversal is a type of depth-first traversal
    that also tries to go deeper in the tree before exploring siblings.
    however, it returns the deepest descendents first

    1) Traverse the left subtree by recursively calling the pre-order function.
    2) Display the data part of root element (or current element)
    3) Traverse the right subtree by recursively calling the pre-order function. */


BinarySearchTree.prototype.postOrder = function() {
    var result = [];
    var node = this.root;
    var traverse = function(node) {
        node.left && traverse(node.left);
        node.right && traverse(node.right);
        result.push(node.value);
    };
    traverse(node);
    return result;
};

//find the left most node to find the min value of a binary tree;
BinarySearchTree.prototype.findMin = function() {
    var node = this.root;
    var traverse = function(node) {
        return !node.left ? node.value : traverse(node.left);
    };
    return traverse(node);
};

//find the right most node to find the max value of a binary tree;
BinarySearchTree.prototype.findMax = function() {
    var node = this.root;
    var traverse = function(node) {
        return !node.right ? node.value : traverse(node.right);
    };
    return traverse(node);
};


BinarySearchTree.prototype.getDepth = function() {
    var node = this.root;
    var maxDepth = 0;
    var traverse = function(node, depth) {
        if (!node) return null;
        if (node) {
            maxDepth = depth > maxDepth ? depth : maxDepth;
            traverse(node.left, depth + 1);
            traverse(node.right, depth + 1);
        }
    };
    traverse(node, 0);
    return maxDepth;
};


//Can you write me a function that returns all the averages of the nodes 
//at each level (or depth)?? with breadth-first traversal


BinarySearchTree.prototype.nodeAverages = function() {
    var node = this.root;
    var result = {};
    var depthAverages = [];

    var traverse = function(node, depth) {
        if (!node) return null;
        if (node) {
            if (!result[depth])
                result[depth] = [node.value];
            else
                result[depth].push(node.value);
        }
        //check to see if node is a leaf, depth stays the same if it is
        //otherwise increment depth for possible right and left nodes
        if (node.right || node.left) {
            traverse(node.left, depth + 1);
            traverse(node.right, depth + 1);
        }
    };
    traverse(node, 0);

    //get averages and breadthFirst
    for (var key in result) {
        var len = result[key].length;
        var depthAvg = 0;
        for (var i = 0; i < len; i++) {
            depthAvg += result[key][i];
        }
        depthAverages.push(Number((depthAvg / len).toFixed(2)));
    }
    return depthAverages;
};

//Convert a binary search tree to a linked-list in place. 
//In-order depth-first traversal.
function LinkedList() {
    this.head = null;
}

BinarySearchTree.prototype.convertToLinkedList = function() {

    var result = [];
    var node = this.root;
    if (!node) return null;

    var traverse = function(node) {
        node.left && traverse(node.left);
        result.push(node.value);
        node.right && traverse(node.right);
    };

    traverse(node);

    var makeNode = function(value) {
        var node = {};
        node.value = value;
        node.next = null;
        return node;
    };

    var list = new LinkedList();
    list.head = makeNode(result[0]);
    var current = list.head;

    for (var i = 1; i < result.length; i++) {
        var currentNode = makeNode(result[i]);
        current.next = currentNode;
        current = current.next;
    }
    return list;
};

//TESTS

var bst = new BinarySearchTree();
bst.add(40).add(25).add(78).add(10).add(32);
console.log('BS1', bst);

var bst2 = new BinarySearchTree();
bst2.add(10).add(20).add(30).add(5).add(8).add(3).add(9);
console.log('BST2', bst2);
console.log('BREADTHFIRST LTR', bst2.breadthFirstLTR());
console.log('BREADTHFIRST RTL', bst2.breadthFirstRTL());
console.log('PREORDER', bst2.preOrder());
console.log('INORDER', bst2.inOrder());
console.log('POSTORDER', bst2.postOrder());

/* 
BREADTHFIRST LTR [ 10, 5, 20, 3, 8, 30, 9 ]
BREADTHFIRST RTL [ 10, 20, 5, 30, 8, 3, 9 ]
PREORDER [ 10, 5, 3, 8, 9, 20, 30 ]
INORDER [ 3, 5, 8, 9, 10, 20, 30 ]
POSTORDER [ 3, 9, 8, 5, 30, 20, 10 ]
*/

var bst3 = new BinarySearchTree();
bst3.add('j').add('f').add('k').add('z').add('a').add('h').add('d');
console.log(bst3);
console.log('BREADTHFIRST LTR', bst3.breadthFirstLTR());
console.log('BREADTHFIRST RTL', bst3.breadthFirstRTL());
console.log('PREORDER', bst3.preOrder());
console.log('INORDER', bst3.inOrder());
console.log('POSTORDER', bst3.postOrder());

/*
BREADTHFIRST LTR [ 'j', 'f', 'k', 'a', 'h', 'z', 'd' ]
BREADTHFIRST RTL [ 'j', 'k', 'f', 'z', 'h', 'a', 'd' ]
PREORDER [ 'j', 'f', 'a', 'd', 'h', 'k', 'z' ]
INORDER [ 'a', 'd', 'f', 'h', 'j', 'k', 'z' ]
POSTORDER [ 'd', 'a', 'h', 'f', 'z', 'k', 'j' ]
 */


console.log(bst2.findMin()); // 3
console.log(bst2.findMax()); // 30
console.log(bst2.contains(15));
//bst2.add(55);
//bst2.add(65);
//bst3.add(75);
console.log(bst2);
console.log(bst2.getDepth()); // 3
console.log(bst2.add(7).add(50).add(80).add(98));
console.log(bst2.getDepth()); // 5
console.log(bst2.nodeAverages()); //[ 10, 12.5, 13.67, 22, 80, 98 ]

console.log(bst2.convertToLinkedList());
//[ 3, 5, 7, 8, 9, 10, 20, 30, 50, 80, 98 ]
//{ head: { value: 3, next: { value: 5, next: [Object] } } }

Puede intentar cubos , una biblioteca JavaScript, tiene todo lo que necesita.

árboles de búsqueda binaria comúnmente conoce como BST son un tipo especial de árboles que se clasifican en la naturaleza. En árbol binario de búsqueda cada nodo es más grande que su hijo izquierdo y el más pequeño que su hijo derecho. Esta característica hace que sea fácil de buscar, insertar y eliminar un nodo del árbol binario de búsqueda.

Algo

// Comprobar si el nodo raíz está vacía o no

// Si sí, entonces asignar al nuevo nodo raíz

// Si no lo iterate. método Iterar comprobará el valor del nodo a añadir desde niño izquierda y derecha del nodo se está procesando actualmente.

// si el valor de nodo a añadir es menor que el nodo de trasladarse Tho hijo izquierdo

// Si se deja niño está vacía de asignar nuevo nodo a este nodo hijo izquierdo

// método Iterar otra llamada

// SI valor de nodo a añadir es mayor que el valor del nodo de movimiento para el hijo derecho

// Si el niño está vacía derecho de asignar el nuevo nodo a este nodo hijo derecho

// método Iterar otra llamada

Si esto ayuda se puede buscar artículo completo aquí árbol binario de búsqueda Insertar nodo Implementación en Javascript

Licenciado bajo: CC-BY-SA con atribución
No afiliado a StackOverflow
scroll top