Pregunta

Menos Recientemente Usado (LRU) Cache es descartar el menos usado recientemente artículos de primera ¿Cómo diseñar e implementar una clase de caché?Los requerimientos de diseño son como sigue:

1) encontrar el elemento tan rápido como podamos

2) una Vez por errores de caché y caché está llena, necesitamos reemplazar el menos usado recientemente elemento tan rápido como sea posible.

Cómo analizar e implementar esta pregunta en términos de patrones de diseño y el diseño del algoritmo?

¿Fue útil?

Solución

Una lista enlazada + tabla hash de punteros a los nodos de lista enlazada es la forma habitual de implementar cachés LRU. Esto le da a O (1) operaciones (suponiendo un hash decente). La ventaja de este (ser O (1)): usted puede hacer una versión multiproceso con sólo bloquear toda la estructura. Usted no tiene que preocuparse de granulado de bloqueo, etc.

En pocas palabras, la forma en que funciona:

En un acceso de un valor, se mueve el nodo correspondiente en la lista enlazada a la cabeza.

Cuando es necesario eliminar un valor de la memoria caché, eliminar desde el extremo de la cola.

Cuando se agrega un valor de caché, que acaba de poner a la cabeza de la lista enlazada.

Gracias a doublep, aquí es el sitio con una implementación en C ++:. Varios contenedor plantillas

Otros consejos

Esta es mi C ++ simple implementación de ejemplo para la caché LRU, con la combinación de almohadilla (unordered_map), y la lista. Los productos que figuran en la lista tienen clave de mapa de acceso, y los elementos en el mapa tener iterador de lista a la lista de acceso.

#include <list>
#include <unordered_map>
#include <assert.h>

using namespace std;

template <class KEY_T, class VAL_T> class LRUCache{
private:
        list< pair<KEY_T,VAL_T> > item_list;
        unordered_map<KEY_T, decltype(item_list.begin()) > item_map;
        size_t cache_size;
private:
        void clean(void){
                while(item_map.size()>cache_size){
                        auto last_it = item_list.end(); last_it --;
                        item_map.erase(last_it->first);
                        item_list.pop_back();
                }
        };
public:
        LRUCache(int cache_size_):cache_size(cache_size_){
                ;
        };

        void put(const KEY_T &key, const VAL_T &val){
                auto it = item_map.find(key);
                if(it != item_map.end()){
                        item_list.erase(it->second);
                        item_map.erase(it);
                }
                item_list.push_front(make_pair(key,val));
                item_map.insert(make_pair(key, item_list.begin()));
                clean();
        };
        bool exist(const KEY_T &key){
                return (item_map.count(key)>0);
        };
        VAL_T get(const KEY_T &key){
                assert(exist(key));
                auto it = item_map.find(key);
                item_list.splice(item_list.begin(), item_list, it->second);
                return it->second->second;
        };

};

Aquí está mi aplicación para una caché LRU básico, simple.

//LRU Cache
#include <cassert>
#include <list>

template <typename K,
          typename V
          >
class LRUCache
    {
    // Key access history, most recent at back
    typedef std::list<K> List;

    // Key to value and key history iterator
    typedef unordered_map< K,
                           std::pair<
                                     V,
                                     typename std::list<K>::iterator
                                    >
                         > Cache;

    typedef V (*Fn)(const K&);

public:
    LRUCache( size_t aCapacity, Fn aFn ) 
        : mFn( aFn )
        , mCapacity( aCapacity )
        {}

    //get value for key aKey
    V operator()( const K& aKey )
        {
        typename Cache::iterator it = mCache.find( aKey );
        if( it == mCache.end() ) //cache-miss: did not find the key
            {
            V v = mFn( aKey );
            insert( aKey, v );
            return v;
            }

        // cache-hit
        // Update access record by moving accessed key to back of the list
        mList.splice( mList.end(), mList, (it)->second.second );

        // return the retrieved value
        return (it)->second.first;
        }

private:
        // insert a new key-value pair in the cache
    void insert( const K& aKey, V aValue )
        {
        //method should be called only when cache-miss happens
        assert( mCache.find( aKey ) == mCache.end() );

        // make space if necessary
        if( mList.size() == mCapacity )
            {
            evict();
            }

        // record k as most-recently-used key
        typename std::list<K>::iterator it = mList.insert( mList.end(), aKey );

        // create key-value entry, linked to the usage record
        mCache.insert( std::make_pair( aKey, std::make_pair( aValue, it ) ) );
        }

        //Purge the least-recently used element in the cache
    void evict()
        {
        assert( !mList.empty() );

        // identify least-recently-used key
        const typename Cache::iterator it = mCache.find( mList.front() );

        //erase both elements to completely purge record
        mCache.erase( it );
        mList.pop_front();
        }

private:
    List mList;
    Cache mCache;
    Fn mFn;
    size_t mCapacity;
    };

Veo aquí varias implementaciones complicadas innecesarios, así que decidí dar mi aplicación también. La caché sólo tiene dos métodos, obtener y definir. Es de esperar que es mejor lectura y comprensión:

#include<unordered_map>
#include<list>

using namespace std;

template<typename K, typename V = K>
class LRUCache
{

private:
    list<K>items;
    unordered_map <K, pair<V, typename list<K>::iterator>> keyValuesMap;
    int csize;

public:
    LRUCache(int s) :csize(s) {
        if (csize < 1)
            csize = 10;
    }

    void set(const K key, const V value) {
        auto pos = keyValuesMap.find(key);
        if (pos == keyValuesMap.end()) {
            items.push_front(key);
            keyValuesMap[key] = { value, items.begin() };
            if (keyValuesMap.size() > csize) {
                keyValuesMap.erase(items.back());
                items.pop_back();
            }
        }
        else {
            items.erase(pos->second.second);
            items.push_front(key);
            keyValuesMap[key] = { value, items.begin() };
        }
    }

    bool get(const K key, V &value) {
        auto pos = keyValuesMap.find(key);
        if (pos == keyValuesMap.end())
            return false;
        items.erase(pos->second.second);
        items.push_front(key);
        keyValuesMap[key] = { pos->second.first, items.begin() };
        value = pos->second.first;
        return true;
    }
};

Tengo una implementación LRU aquí . La interfaz sigue std :: mapa por lo que no debería ser tan difícil de usar. Además, puede proporcionar un controlador copia de seguridad personalizado, que se utiliza si los datos se invalida en la memoria caché.

sweet::Cache<std::string,std::vector<int>, 48> c1;
c1.insert("key1", std::vector<int>());
c1.insert("key2", std::vector<int>());
assert(c1.contains("key1"));

Me implementa una caché LRU thread-safe dos años atrás.

LRU se lleva a cabo típicamente con un HashMap y LinkedList. Puede google el detalle de implementación. Hay una gran cantidad de recursos al respecto (Wikipedia tiene una buena explicación también).

Con el fin de ser flujos seguros, es necesario poner de bloqueo siempre que modifique el estado de la LRU.

Me pegará mi código C ++ aquí por su referencia.

Aquí está la aplicación.

/***
    A template thread-safe LRU container.

    Typically LRU cache is implemented using a doubly linked list and a hash map.
    Doubly Linked List is used to store list of pages with most recently used page
    at the start of the list. So, as more pages are added to the list,
    least recently used pages are moved to the end of the list with page
    at tail being the least recently used page in the list.

    Additionally, this LRU provides time-to-live feature. Each entry has an expiration
    datetime.
***/
#ifndef LRU_CACHE_H
#define LRU_CACHE_H

#include <iostream>
#include <list>

#include <boost/unordered_map.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/make_shared.hpp>
#include <boost/date_time/posix_time/posix_time.hpp>
#include <boost/thread/mutex.hpp>

template <typename KeyType, typename ValueType>
  class LRUCache {
 private:
  typedef boost::posix_time::ptime DateTime;

  // Cache-entry
  struct ListItem {
  ListItem(const KeyType &key,
           const ValueType &value,
           const DateTime &expiration_datetime)
  : m_key(key), m_value(value), m_expiration_datetime(expiration_datetime){}
    KeyType m_key;
    ValueType m_value;
    DateTime m_expiration_datetime;
  };

  typedef boost::shared_ptr<ListItem> ListItemPtr;
  typedef std::list<ListItemPtr> LruList;
  typedef typename std::list<ListItemPtr>::iterator LruListPos;
  typedef boost::unordered_map<KeyType, LruListPos> LruMapper;

  // A mutext to ensuare thread-safety.
  boost::mutex m_cache_mutex;

  // Maximum number of entries.
  std::size_t m_capacity;

  // Stores cache-entries from latest to oldest.
  LruList m_list;

  // Mapper for key to list-position.
  LruMapper m_mapper;

  // Default time-to-live being add to entry every time we touch it.
  unsigned long m_ttl_in_seconds;

  /***
      Note : This is a helper function whose function call need to be wrapped
      within a lock. It returns true/false whether key exists and
      not expires. Delete the expired entry if necessary.
  ***/
  bool containsKeyHelper(const KeyType &key) {
    bool has_key(m_mapper.count(key) != 0);
    if (has_key) {
      LruListPos pos = m_mapper[key];
      ListItemPtr & cur_item_ptr = *pos;

      // Remove the entry if key expires
      if (isDateTimeExpired(cur_item_ptr->m_expiration_datetime)) {
        has_key = false;
        m_list.erase(pos);
        m_mapper.erase(key);
      }
    }
    return has_key;
  }

  /***
      Locate an item in list by key, and move it at the front of the list,
      which means make it the latest item.
      Note : This is a helper function whose function call need to be wrapped
      within a lock.
  ***/
  void makeEntryTheLatest(const KeyType &key) {
    if (m_mapper.count(key)) {
      // Add original item at the front of the list,
      // and update <Key, ListPosition> mapper.
      LruListPos original_list_position = m_mapper[key];
      const ListItemPtr & cur_item_ptr = *original_list_position;
      m_list.push_front(cur_item_ptr);
      m_mapper[key] = m_list.begin();

      // Don't forget to update its expiration datetime.
      m_list.front()->m_expiration_datetime = getExpirationDatetime(m_list.front()->m_expiration_datetime);

      // Erase the item at original position.
      m_list.erase(original_list_position);
    }
  }

 public:

  /***
      Cache should have capacity to limit its memory usage.
      We also add time-to-live for each cache entry to expire
      the stale information. By default, ttl is one hour.
  ***/
 LRUCache(std::size_t capacity, unsigned long ttl_in_seconds = 3600)
   : m_capacity(capacity), m_ttl_in_seconds(ttl_in_seconds) {}

  /***
      Return now + time-to-live
  ***/
  DateTime getExpirationDatetime(const DateTime &now) {
    static const boost::posix_time::seconds ttl(m_ttl_in_seconds);
    return now + ttl;
  }

  /***
      If input datetime is older than current datetime,
      then it is expired.
  ***/
  bool isDateTimeExpired(const DateTime &date_time) {
    return date_time < boost::posix_time::second_clock::local_time();
  }

  /***
      Return the number of entries in this cache.
   ***/
  std::size_t size() {
    boost::mutex::scoped_lock lock(m_cache_mutex);
    return m_mapper.size();
  }

  /***
      Get value by key.
      Return true/false whether key exists.
      If key exists, input paramter value will get updated.
  ***/
  bool get(const KeyType &key, ValueType &value) {
    boost::mutex::scoped_lock lock(m_cache_mutex);
    if (!containsKeyHelper(key)) {
      return false;
    } else {
      // Make the entry the latest and update its TTL.
      makeEntryTheLatest(key);

      // Then get its value.
      value = m_list.front()->m_value;
      return true;
    }
  }

  /***
      Add <key, value> pair if no such key exists.
      Otherwise, just update the value of old key.
  ***/
  void put(const KeyType &key, const ValueType &value) {
    boost::mutex::scoped_lock lock(m_cache_mutex);
    if (containsKeyHelper(key)) {
      // Make the entry the latest and update its TTL.
      makeEntryTheLatest(key);

      // Now we only need to update its value.
      m_list.front()->m_value = value;
    } else { // Key exists and is not expired.
      if (m_list.size() == m_capacity) {
        KeyType delete_key = m_list.back()->m_key;
        m_list.pop_back();
        m_mapper.erase(delete_key);
      }

      DateTime now = boost::posix_time::second_clock::local_time();
      m_list.push_front(boost::make_shared<ListItem>(key, value,
                                                     getExpirationDatetime(now)));
      m_mapper[key] = m_list.begin();
    }
  }
};
#endif

Aquí es las pruebas de unidad.

#include "cxx_unit.h"
#include "lru_cache.h"

struct LruCacheTest
  : public FDS::CxxUnit::TestFixture<LruCacheTest>{
  CXXUNIT_TEST_SUITE();
  CXXUNIT_TEST(LruCacheTest, testContainsKey);
  CXXUNIT_TEST(LruCacheTest, testGet);
  CXXUNIT_TEST(LruCacheTest, testPut);
  CXXUNIT_TEST_SUITE_END();

  void testContainsKey();
  void testGet();
  void testPut();
};


void LruCacheTest::testContainsKey() {
  LRUCache<int,std::string> cache(3);
  cache.put(1,"1"); // 1
  cache.put(2,"2"); // 2,1
  cache.put(3,"3"); // 3,2,1
  cache.put(4,"4"); // 4,3,2

  std::string value_holder("");
  CXXUNIT_ASSERT(cache.get(1, value_holder) == false); // 4,3,2
  CXXUNIT_ASSERT(value_holder == "");

  CXXUNIT_ASSERT(cache.get(2, value_holder) == true); // 2,4,3
  CXXUNIT_ASSERT(value_holder == "2");

  cache.put(5,"5"); // 5, 2, 4

  CXXUNIT_ASSERT(cache.get(3, value_holder) == false); // 5, 2, 4
  CXXUNIT_ASSERT(value_holder == "2"); // value_holder is still "2"

  CXXUNIT_ASSERT(cache.get(4, value_holder) == true); // 4, 5, 2
  CXXUNIT_ASSERT(value_holder == "4");

  cache.put(2,"II"); // {2, "II"}, 4, 5

  CXXUNIT_ASSERT(cache.get(2, value_holder) == true); // 2, 4, 5
  CXXUNIT_ASSERT(value_holder == "II");

  // Cache-entries : {2, "II"}, {4, "4"}, {5, "5"}
  CXXUNIT_ASSERT(cache.size() == 3);
  CXXUNIT_ASSERT(cache.get(2, value_holder) == true);
  CXXUNIT_ASSERT(cache.get(4, value_holder) == true);
  CXXUNIT_ASSERT(cache.get(5, value_holder) == true);
}

void LruCacheTest::testGet() {
  LRUCache<int,std::string> cache(3);
  cache.put(1,"1"); // 1
  cache.put(2,"2"); // 2,1
  cache.put(3,"3"); // 3,2,1
  cache.put(4,"4"); // 4,3,2

  std::string value_holder("");
  CXXUNIT_ASSERT(cache.get(1, value_holder) == false); // 4,3,2
  CXXUNIT_ASSERT(value_holder == "");

  CXXUNIT_ASSERT(cache.get(2, value_holder) == true); // 2,4,3
  CXXUNIT_ASSERT(value_holder == "2");

  cache.put(5,"5"); // 5,2,4
  CXXUNIT_ASSERT(cache.get(5, value_holder) == true); // 5,2,4
  CXXUNIT_ASSERT(value_holder == "5");

  CXXUNIT_ASSERT(cache.get(4, value_holder) == true); // 4, 5, 2
  CXXUNIT_ASSERT(value_holder == "4");


  cache.put(2,"II");
  CXXUNIT_ASSERT(cache.get(2, value_holder) == true); // {2 : "II"}, 4, 5
  CXXUNIT_ASSERT(value_holder == "II");

  // Cache-entries : {2, "II"}, {4, "4"}, {5, "5"}
  CXXUNIT_ASSERT(cache.size() == 3);
  CXXUNIT_ASSERT(cache.get(2, value_holder) == true);
  CXXUNIT_ASSERT(cache.get(4, value_holder) == true);
  CXXUNIT_ASSERT(cache.get(5, value_holder) == true);
}

void LruCacheTest::testPut() {
  LRUCache<int,std::string> cache(3);
  cache.put(1,"1"); // 1
  cache.put(2,"2"); // 2,1
  cache.put(3,"3"); // 3,2,1
  cache.put(4,"4"); // 4,3,2
  cache.put(5,"5"); // 5,4,3

  std::string value_holder("");
  CXXUNIT_ASSERT(cache.get(2, value_holder) == false); // 5,4,3
  CXXUNIT_ASSERT(value_holder == "");

  CXXUNIT_ASSERT(cache.get(4, value_holder) == true); // 4,5,3
  CXXUNIT_ASSERT(value_holder == "4");

  cache.put(2,"II");
  CXXUNIT_ASSERT(cache.get(2, value_holder) == true); // II,4,5
  CXXUNIT_ASSERT(value_holder == "II");

  // Cache-entries : {2, "II"}, {4, "4"}, {5, "5"}
  CXXUNIT_ASSERT(cache.size() == 3);
  CXXUNIT_ASSERT(cache.get(2, value_holder) == true);
  CXXUNIT_ASSERT(cache.get(4, value_holder) == true);
  CXXUNIT_ASSERT(cache.get(5, value_holder) == true);
}

CXXUNIT_REGISTER_TEST(LruCacheTest);

Es caché de una estructura de datos que soporta el valor de recuperación de clave como la tabla hash? LRU significa el caché tiene cierta limitación de tamaño que gota de la necesidad entradas menos usadas periódicamente.

Si se implementa con la lista enlazada + tabla hash de punteros cómo se puede hacer O (1) la recuperación de valor con la tecla?

Me implementaría caché LRU con una tabla hash que el valor de cada entrada es punteros de valor + para Prev / siguiente entrada.

En cuanto al acceso multi-threading, yo preferiría bloqueo lector-grabador (lo ideal es implementado por bloqueo de giro ya que la contención es generalmente rápido) para supervisar.

LRU de sustitución de páginas Técnica:

Cuando se hace referencia a una página, la página puede ser requerida en la memoria caché.

If in the cache:. Es necesario hacer llegar a la parte delantera de la cola de la memoria caché

If NOT in the cache: que traemos en la memoria caché. En palabras sencillas, se añade una nueva página en la parte delantera de la cola de la memoria caché. Si la caché está llena, es decir, todos los marcos están llenos, se elimina una página desde la parte posterior de la cola de la memoria caché, y añadir la nueva página a la parte delantera de la cola de la memoria caché.

# Cache Size
csize = int(input())

# Sequence of pages 
pages = list(map(int,input().split()))

# Take a cache list
cache=[]

# Keep track of number of elements in cache
n=0

# Count Page Fault
fault=0

for page in pages:
    # If page exists in cache
    if page in cache:
        # Move the page to front as it is most recent page
        # First remove from cache and then append at front
        cache.remove(page)
        cache.append(page)
    else:
        # Cache is full
        if(n==csize):
            # Remove the least recent page 
            cache.pop(0)
        else:
            # Increment element count in cache
            n=n+1

        # Page not exist in cache => Page Fault
        fault += 1
        cache.append(page)

print("Page Fault:",fault)

Entrada / Salida

Input:
3
1 2 3 4 1 2 5 1 2 3 4 5

Output:
Page Fault: 10

Esta es mi sencillo programador de Java con una complejidad O (1).

//

package com.chase.digital.mystack;

import java.util.HashMap;
import java.util.Map;

public class LRUCache {

  private int size;
  private Map<String, Map<String, Integer>> cache = new HashMap<>();

  public LRUCache(int size) {
    this.size = size;
  }

  public void addToCache(String key, String value) {
    if (cache.size() < size) {
      Map<String, Integer> valueMap = new HashMap<>();
      valueMap.put(value, 0);
      cache.put(key, valueMap);
    } else {
      findLRUAndAdd(key, value);
    }
  }


  public String getFromCache(String key) {
    String returnValue = null;
    if (cache.get(key) == null) {
      return null;
    } else {
      Map<String, Integer> value = cache.get(key);
      for (String s : value.keySet()) {
        value.put(s, value.get(s) + 1);
        returnValue = s;
      }
    }
    return returnValue;
  }

  private void findLRUAndAdd(String key, String value) {
    String leastRecentUsedKey = null;
    int lastUsedValue = 500000;
    for (String s : cache.keySet()) {
      final Map<String, Integer> stringIntegerMap = cache.get(s);
      for (String s1 : stringIntegerMap.keySet()) {
        final Integer integer = stringIntegerMap.get(s1);
        if (integer < lastUsedValue) {
          lastUsedValue = integer;
          leastRecentUsedKey = s;
        }
      }
    }
    cache.remove(leastRecentUsedKey);
    Map<String, Integer> valueMap = new HashMap<>();
    valueMap.put(value, 0);
    cache.put(key, valueMap);
  }


}
Licenciado bajo: CC-BY-SA con atribución
No afiliado a StackOverflow
scroll top