Pregunta

Estoy escribiendo un juego en Haskell, y mi paso de la corriente en la interfaz de usuario implica una gran cantidad de generación de procedimiento de la geometría. Actualmente estoy enfocado en la identificación de realización de una operación en particular (pseudocódigo C-ish):

Vec4f multiplier, addend;
Vec4f vecList[];
for (int i = 0; i < count; i++)
    vecList[i] = vecList[i] * multiplier + addend;

Esto es, un complemento multiplicar-pantano-estándar de cuatro flotadores, el tipo de cosas maduro para la optimización SIMD.

El resultado va a una memoria tampón de vértice OpenGL, lo que tiene que consigue descargado en una matriz de C plana con el tiempo. Por la misma razón, los cálculos probablemente se deben hacer en los tipos C 'float'.

He buscado ya sea una biblioteca o una solución idiomática nativa de hacer este tipo de cosas con rapidez en Haskell, pero cada solución que yo he llegado con parece flotar alrededor del 2% del rendimiento (es decir, 50 veces más lenta ) en comparación con C de GCC con las banderas correctas. Por supuesto, empecé con Haskell hace un par de semanas, por lo que mi experiencia es limitada, por lo que me voy con ustedes. ¿Puede alguno de ofrecerle sugerencias para una implementación más rápida Haskell, o enlaces a documentación sobre cómo escribir código de alto rendimiento Haskell?

En primer lugar, la solución más reciente Haskell (relojes aproximadamente 12 segundos). Probé los patrones de bang-cosas de este SO posterior , pero no lo hacen AFAICT una diferencia. '(\ Iv -> v * 4)' Sustitución 'multisuma' con. Traído tiempo de ejecución hasta 1,9 segundos, por lo que no parece la materia a nivel de bits (y los consiguientes desafíos para la optimización automática) a ser demasiado culpable

{-# LANGUAGE BangPatterns #-}
{-# OPTIONS_GHC -O2 -fvia-C -optc-O3 -fexcess-precision -optc-march=native #-}

import Data.Vector.Storable
import qualified Data.Vector.Storable as V
import Foreign.C.Types
import Data.Bits

repCount = 10000
arraySize = 20000

a = fromList $ [0.2::CFloat,  0.1, 0.6, 1.0]
m = fromList $ [0.99::CFloat, 0.7, 0.8, 0.6]

multAdd :: Int -> CFloat -> CFloat
multAdd !i !v = v * (m ! (i .&. 3)) + (a ! (i .&. 3))

multList :: Int -> Vector CFloat -> Vector CFloat
multList !count !src
    | count <= 0    = src
    | otherwise     = multList (count-1) $ V.imap multAdd src

main = do
    print $ Data.Vector.Storable.sum $ multList repCount $ 
        Data.Vector.Storable.replicate (arraySize*4) (0::CFloat)

Esto es lo que tengo en C. El código aquí tiene algunos #ifdefs la que le impide ser compilado recto-para arriba; desplazarse hacia abajo para el piloto de pruebas.

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

typedef float v4fs __attribute__ ((vector_size (16)));
typedef struct { float x, y, z, w; } Vector4;

void setv4(v4fs *v, float x, float y, float z, float w) {
    float *a = (float*) v;
    a[0] = x;
    a[1] = y;
    a[2] = z;
    a[3] = w;
}

float sumv4(v4fs *v) {
    float *a = (float*) v;
    return a[0] + a[1] + a[2] + a[3];
}

void vecmult(v4fs *MAYBE_RESTRICT s, v4fs *MAYBE_RESTRICT d, v4fs a, v4fs m) {
    for (int j = 0; j < N; j++) {
        d[j] = s[j] * m + a;
    }
}

void scamult(float *MAYBE_RESTRICT s, float *MAYBE_RESTRICT d,
             Vector4 a, Vector4 m) {
    for (int j = 0; j < (N*4); j+=4) {
        d[j+0] = s[j+0] * m.x + a.x;
        d[j+1] = s[j+1] * m.y + a.y;
        d[j+2] = s[j+2] * m.z + a.z;
        d[j+3] = s[j+3] * m.w + a.w;
    }
}

int main () {
    v4fs a, m;
    v4fs *s, *d;

    setv4(&a, 0.2, 0.1, 0.6, 1.0);
    setv4(&m, 0.99, 0.7, 0.8, 0.6);

    s = calloc(N, sizeof(v4fs));
    d = s;

    double start = clock();
    for (int i = 0; i < M; i++) {

#ifdef COPY
        d = malloc(N * sizeof(v4fs));
#endif

#ifdef VECTOR
        vecmult(s, d, a, m);
#else
        Vector4 aa = *(Vector4*)(&a);
        Vector4 mm = *(Vector4*)(&m);
        scamult((float*)s, (float*)d, aa, mm);
#endif

#ifdef COPY
        free(s);
        s = d;
#endif
    }
    double end = clock();

    float sum = 0;
    for (int j = 0; j < N; j++) {
        sum += sumv4(s+j);
    }
    printf("%-50s %2.5f %f\n\n", NAME,
            (end - start) / (double) CLOCKS_PER_SEC, sum);
}

Este script compilar y ejecutar las pruebas con una serie de combinaciones de indicadores gcc. El mejor rendimiento se había por cmath-64-nativo-O3-restringir-vector-NOCOPY en mi sistema, teniendo 0.22 segundos.

import System.Process
import GHC.IOBase

cBase = ("cmath", "gcc mult.c -ggdb --std=c99 -DM=10000 -DN=20000")
cOptions = [
            [("32", "-m32"), ("64", "-m64")],
            [("generic", ""), ("native", "-march=native -msse4")],
            [("O1", "-O1"), ("O2", "-O2"), ("O3", "-O3")],
            [("restrict", "-DMAYBE_RESTRICT=__restrict__"),
                ("norestrict", "-DMAYBE_RESTRICT=")],
            [("vector", "-DVECTOR"), ("scalar", "")],
            [("copy", "-DCOPY"), ("nocopy", "")]
           ]

-- Fold over the Cartesian product of the double list. Probably a Prelude function
-- or two that does this, but hey. The 'perm' referred to permutations until I realized
-- that this wasn't actually doing permutations. '
permfold :: (a -> a -> a) -> a -> [[a]] -> [a]
permfold f z [] = [z]
permfold f z (x:xs) = concat $ map (\a -> (permfold f (f z a) xs)) x

prepCmd :: (String, String) -> (String, String) -> (String, String)
prepCmd (name, cmd) (namea, cmda) =
    (name ++ "-" ++ namea, cmd ++ " " ++ cmda)

runCCmd name compileCmd = do
    res <- system (compileCmd ++ " -DNAME=\\\"" ++ name ++ "\\\" -o " ++ name)
    if res == ExitSuccess
        then do system ("./" ++ name)
                return ()
        else    putStrLn $ name ++ " did not compile"

main = do
    mapM_ (uncurry runCCmd) $ permfold prepCmd cBase cOptions
¿Fue útil?

Solución

responde romana Leschinkskiy:

  

En realidad, el núcleo se ve bien para la mayoría   yo. Usando unsafeIndex en lugar de (!)   hace que el programa sea más del doble de   rápida ( ver mi respuesta anterior ). los   programa de abajo es mucho más rápido, aunque   (Y más limpia, OMI). Sospecho que la   restante diferencia entre esto y   el programa C se debe a general del GHC   suckiness cuando se trata de flotación   punto. La CABEZA produce la   mejores resultados con la NCG y -msse2

En primer lugar, definir un nuevo tipo de datos Vec4:

{-# LANGUAGE BangPatterns #-}

import Data.Vector.Storable
import qualified Data.Vector.Storable as V
import Foreign
import Foreign.C.Types

-- Define a 4 element vector type
data Vec4 = Vec4 {-# UNPACK #-} !CFloat
                 {-# UNPACK #-} !CFloat
                 {-# UNPACK #-} !CFloat
                 {-# UNPACK #-} !CFloat

Asegúrese de que podemos almacenarla en un array

instance Storable Vec4 where
  sizeOf _ = sizeOf (undefined :: CFloat) * 4
  alignment _ = alignment (undefined :: CFloat)

  {-# INLINE peek #-}
  peek p = do
             a <- peekElemOff q 0
             b <- peekElemOff q 1
             c <- peekElemOff q 2
             d <- peekElemOff q 3
             return (Vec4 a b c d)
    where
      q = castPtr p
  {-# INLINE poke #-}
  poke p (Vec4 a b c d) = do
             pokeElemOff q 0 a
             pokeElemOff q 1 b
             pokeElemOff q 2 c
             pokeElemOff q 3 d
    where
      q = castPtr p

Valores y métodos en este tipo:

a = Vec4 0.2 0.1 0.6 1.0
m = Vec4 0.99 0.7 0.8 0.6

add :: Vec4 -> Vec4 -> Vec4
{-# INLINE add #-}
add (Vec4 a b c d) (Vec4 a' b' c' d') = Vec4 (a+a') (b+b') (c+c') (d+d')

mult :: Vec4 -> Vec4 -> Vec4
{-# INLINE mult #-}
mult (Vec4 a b c d) (Vec4 a' b' c' d') = Vec4 (a*a') (b*b') (c*c') (d*d')

vsum :: Vec4 -> CFloat
{-# INLINE vsum #-}
vsum (Vec4 a b c d) = a+b+c+d

multList :: Int -> Vector Vec4 -> Vector Vec4
multList !count !src
    | count <= 0    = src
    | otherwise     = multList (count-1) $ V.map (\v -> add (mult v m) a) src

main = do
    print $ Data.Vector.Storable.sum
          $ Data.Vector.Storable.map vsum
          $ multList repCount
          $ Data.Vector.Storable.replicate arraySize (Vec4 0 0 0 0)

repCount, arraySize :: Int
repCount = 10000
arraySize = 20000

Con GHC 6.12.1, O2 -fasm:

  • 1.752

con la cabeza GHC (junio 26), -O2 -fasm -msse2

  • 1.708

Esto se parece a la forma más idiomática para escribir una matriz Vec4, y obtiene el mejor rendimiento (11x más rápido que el original). (Y esto podría convertirse en un punto de referencia para backend LLVM de GHC)

Otros consejos

Bueno, esto es mejor. 3.5s en lugar de 14s.

{-# LANGUAGE BangPatterns #-}
{-

-- multiply-add of four floats,
Vec4f multiplier, addend;
Vec4f vecList[];
for (int i = 0; i < count; i++)
    vecList[i] = vecList[i] * multiplier + addend;

-}

import qualified Data.Vector.Storable as V
import Data.Vector.Storable (Vector)
import Data.Bits

repCount, arraySize :: Int
repCount = 10000
arraySize = 20000

a, m :: Vector Float
a = V.fromList [0.2,  0.1, 0.6, 1.0]
m = V.fromList [0.99, 0.7, 0.8, 0.6]

multAdd :: Int -> Float -> Float
multAdd i v = v * (m `V.unsafeIndex` (i .&. 3)) + (a `V.unsafeIndex` (i .&. 3))

go :: Int -> Vector Float -> Vector Float
go n s
    | n <= 0    = s
    | otherwise = go (n-1) (f s)
  where
    f = V.imap multAdd

main = print . V.sum $ go repCount v
  where
    v :: Vector Float
    v = V.replicate (arraySize * 4) 0
            -- ^ a flattened Vec4f []

¿Qué es mejor de lo que era:

$ ghc -O2 --make A.hs
[1 of 1] Compiling Main             ( A.hs, A.o )
Linking A ...

$ time ./A
516748.13
./A  3.58s user 0.01s system 99% cpu 3.593 total

multisuma compila bien:

        case readFloatOffAddr#
               rb_aVn
               (word2Int#
                  (and# (int2Word# sc1_s1Yx) __word 3))
               realWorld#
        of _ { (# s25_X1Tb, x4_X1Te #) ->
        case readFloatOffAddr#
               rb11_X118
               (word2Int#
                  (and# (int2Word# sc1_s1Yx) __word 3))
               realWorld#
        of _ { (# s26_X1WO, x5_X20B #) ->
        case writeFloatOffAddr#
               @ RealWorld
               a17_s1Oe
               sc3_s1Yz
               (plusFloat#
                  (timesFloat# x3_X1Qz x4_X1Te) x5_X20B)

Sin embargo, estás haciendo 4-elemento a la vez se multiplica en el código C, por lo tendremos que hacerlo directamente, en lugar de fingir por bucle y enmascaramiento. GCC es, probablemente, desenrollar el bucle, también.

Así que para conseguir un rendimiento idéntico, necesitaríamos multiplicar el vector (un poco difícil, posiblemente a través del backend LLVM) y desenrollar el bucle (posiblemente fundiéndolo). Voy a aplazar romana aquí para ver si hay otras cosas obvias.

Una idea podría ser la de utilizar realmente una Vec4 vectorial, en lugar de aplanamiento.

Licenciado bajo: CC-BY-SA con atribución
No afiliado a StackOverflow
scroll top