Pregunta

Estoy volviendo a C ++ después de un par de años haciendo mucho C #, y recientemente Objective C.

Una cosa que he hecho antes es rodar mi propio adaptador de iterador para std :: map que se destrabará solo a la parte del valor, en lugar del par clave-valor. Esto es algo bastante común y natural de hacer. C # proporciona esta facilidad con sus propiedades de Claves y Valores de su clase Diccionario. El NSDictionary de Objective-C, de manera similar, tiene allKeys y allValues.

Desde que he estado ausente, Boost ha adquirido las bibliotecas Range y ForEach, que ahora estoy usando ampliamente. Me preguntaba si entre los dos había alguna posibilidad de hacer lo mismo, pero no he podido encontrar nada.

Estoy pensando en estropear algo usando los adaptadores de iterador de Boost, pero antes de seguir esa ruta, pensé preguntar aquí si alguien sabe de tal instalación en Boost, o en algún otro lugar listo.

¿Fue útil?

Solución

No creo que haya nada fuera de la caja. Puede usar boost :: make_transform.

template<typename T1, typename T2> T2& take_second(const std::pair<T1, T2> &a_pair) 
{
  return a_pair.second;
}

void run_map_value()
{
  map<int,string> a_map;
  a_map[0] = "zero";
  a_map[1] = "one";
  a_map[2] = "two";
  copy( boost::make_transform_iterator(a_map.begin(), take_second<int, string>),
    boost::make_transform_iterator(a_map.end(), take_second<int, string>),
    ostream_iterator<string>(cout, "\n")
    );
}

Otros consejos

Reemplazando la respuesta anterior, en caso de que alguien más encuentre esto como yo. A partir del boost 1.43, se proporcionan algunos adaptadores de rango de uso común. En este caso, desea boost :: adapters :: map_values. El ejemplo relevante: http://www.boost.org/doc/libs/1_46_0/libs/range/doc/html/range/reference/adaptors/reference/map_values.html#range.reference.adaptors .reference.map_values.map_values_example

Hay un adaptador de rango de refuerzo para este propósito exactamente. Consulte http: //www.boost .org / doc / libs / 1_53_0 / libs / range / doc / html / range / reference / adapters / reference / map_values.html

(Este ejemplo se cribó desde allí)

int main(int argc, const char* argv[])
{
    using namespace boost::assign;
    using namespace boost::adaptors;

    std::map<int,int> input;
    for (int i = 0; i < 10; ++i)
    input.insert(std::make_pair(i, i * 10));

    boost::copy(
        input | map_values,
        std::ostream_iterator<int>(std::cout, ","));

    return 0;
}

Continuando con la respuesta de David, hay otra posibilidad de poner la ebullición creando una clase derivada de boost :: transform_iterator. Estoy usando esta solución en mis proyectos:

namespace detail
{

template<bool IsConst, bool IsVolatile, typename T>
struct add_cv_if_c
{
    typedef T type;
};
template<typename T>
struct add_cv_if_c<true, false, T>
{
    typedef const T type;
};
template<typename T>
struct add_cv_if_c<false, true, T>
{
    typedef volatile T type;
};
template<typename T>
struct add_cv_if_c<true, true, T>
{
    typedef const volatile T type;
};

template<typename TestConst, typename TestVolatile, typename T>
struct add_cv_if: public add_cv_if_c<TestConst::value, TestVolatile::value, T>
{};

}   // namespace detail


/** An unary function that accesses the member of class T specified in the MemberPtr template parameter.

    The cv-qualification of T is preserved for MemberType
 */
template<typename T, typename MemberType, MemberType T::*MemberPtr>
struct access_member_f
{
    // preserve cv-qualification of T for T::second_type
    typedef typename detail::add_cv_if<
        std::tr1::is_const<T>, 
        std::tr1::is_volatile<T>, 
        MemberType
    >::type& result_type;

    result_type operator ()(T& t) const
    {
        return t.*MemberPtr;
    }
};

/** @short  An iterator adaptor accessing the member called 'second' of the class the 
    iterator is pointing to.
 */
template<typename Iterator>
class accessing_second_iterator: public 
    boost::transform_iterator<
        access_member_f<
            // note: we use the Iterator's reference because this type 
            // is the cv-qualified iterated type (as opposed to value_type).
            // We want to preserve the cv-qualification because the iterator 
            // might be a const_iterator e.g. iterating a const 
            // std::pair<> but std::pair<>::second_type isn't automatically 
            // const just because the pair is const - access_member_f is 
            // preserving the cv-qualification, otherwise compiler errors will 
            // be the result
            typename std::tr1::remove_reference<
                typename std::iterator_traits<Iterator>::reference
            >::type, 
            typename std::iterator_traits<Iterator>::value_type::second_type, 
            &std::iterator_traits<Iterator>::value_type::second
        >, 
        Iterator
    >
{
    typedef boost::transform_iterator<
        access_member_f<
            typename std::tr1::remove_reference<
                typename std::iterator_traits<Iterator>::reference
            >::type, 
            typename std::iterator_traits<Iterator>::value_type::second_type, 
            &std::iterator_traits<Iterator>::value_type::second
        >, 
        Iterator
    > baseclass;

public:
    accessing_second_iterator(): 
        baseclass()
    {}

    // note: allow implicit conversion from Iterator
    accessing_second_iterator(Iterator it): 
        baseclass(it)
    {}
};

Esto lleva a un código aún más limpio:

void run_map_value()
{
  typedef map<int, string> a_map_t;
  a_map_t a_map;
  a_map[0] = "zero";
  a_map[1] = "one";
  a_map[2] = "two";

  typedef accessing_second_iterator<a_map_t::const_iterator> ia_t;
  // note: specify the iterator adaptor type explicitly as template type, enabling 
  // implicit conversion from begin()/end()
  copy<ia_t>(a_map.begin(), a_map.end(),
    ostream_iterator<string>(cout, "\n")
  );
}
Licenciado bajo: CC-BY-SA con atribución
No afiliado a StackOverflow
scroll top