Question

Je veux faire une régression linéaire dans R en utilisant la fonction lm(). Mes données est une série chronologique annuelle avec un champ pour l'année (22 ans) et un autre pour l'état (50 états). Je veux ajuster une régression pour chaque état de sorte qu'à la fin, j'ai un vecteur de réponses lm. Je peux imaginer faire boucle pour chaque état faisant alors la régression dans la boucle et en ajoutant les résultats de chaque régression à un vecteur. Cela ne semble pas très R comme cependant. SAS je ferais un « par » déclaration et dans SQL que je ferais un « groupe par ». Quel est le moyen R de le faire?

Était-ce utile?

La solution

Voici une façon en utilisant le package lme4.

 library(lme4)
 d <- data.frame(state=rep(c('NY', 'CA'), c(10, 10)),
                 year=rep(1:10, 2),
                 response=c(rnorm(10), rnorm(10)))

 xyplot(response ~ year, groups=state, data=d, type='l')

 fits <- lmList(response ~ year | state, data=d)
 fits
#------------
Call: lmList(formula = response ~ year | state, data = d)
Coefficients:
   (Intercept)        year
CA -1.34420990  0.17139963
NY  0.00196176 -0.01852429

Degrees of freedom: 20 total; 16 residual
Residual standard error: 0.8201316

Autres conseils

Voici une approche utilisant le package plyr :

d <- data.frame(
  state = rep(c('NY', 'CA'), 10),
  year = rep(1:10, 2),
  response= rnorm(20)
)

library(plyr)
# Break up d by state, then fit the specified model to each piece and
# return a list
models <- dlply(d, "state", function(df) 
  lm(response ~ year, data = df))

# Apply coef to each model and return a data frame
ldply(models, coef)

# Print the summary of each model
l_ply(models, summary, .print = TRUE)

Depuis 2009, dplyr a été publié qui fournit en fait une très belle façon de faire ce genre de regroupement, ressemblant étroitement à ce que fait SAS.

library(dplyr)

d <- data.frame(state=rep(c('NY', 'CA'), c(10, 10)),
                year=rep(1:10, 2),
                response=c(rnorm(10), rnorm(10)))
fitted_models = d %>% group_by(state) %>% do(model = lm(response ~ year, data = .))
# Source: local data frame [2 x 2]
# Groups: <by row>
#
#    state   model
#   (fctr)   (chr)
# 1     CA <S3:lm>
# 2     NY <S3:lm>
fitted_models$model
# [[1]]
# 
# Call:
# lm(formula = response ~ year, data = .)
# 
# Coefficients:
# (Intercept)         year  
#    -0.06354      0.02677  
#
#
# [[2]]
# 
# Call:
# lm(formula = response ~ year, data = .)
# 
# Coefficients:
# (Intercept)         year  
#    -0.35136      0.09385  

Pour récupérer les coefficients et Rsquared / Val.par, on peut utiliser le package broom. Ce paquet fournit:

  

trois génériques S3: bien rangé, qui résume ce modèle        conclusions statistiques telles que les coefficients de régression;        augmenter, ce qui ajoute des colonnes aux données originales telles que        les prévisions, les résidus et les affectations de cluster; et coup d'oeil, ce qui        fournit un résumé d'une ligne de statistiques au niveau du modèle.

library(broom)
fitted_models %>% tidy(model)
# Source: local data frame [4 x 6]
# Groups: state [2]
# 
#    state        term    estimate  std.error  statistic   p.value
#   (fctr)       (chr)       (dbl)      (dbl)      (dbl)     (dbl)
# 1     CA (Intercept) -0.06354035 0.83863054 -0.0757668 0.9414651
# 2     CA        year  0.02677048 0.13515755  0.1980687 0.8479318
# 3     NY (Intercept) -0.35135766 0.60100314 -0.5846187 0.5749166
# 4     NY        year  0.09385309 0.09686043  0.9689519 0.3609470
fitted_models %>% glance(model)
# Source: local data frame [2 x 12]
# Groups: state [2]
# 
#    state   r.squared adj.r.squared     sigma statistic   p.value    df
#   (fctr)       (dbl)         (dbl)     (dbl)     (dbl)     (dbl) (int)
# 1     CA 0.004879969  -0.119510035 1.2276294 0.0392312 0.8479318     2
# 2     NY 0.105032068  -0.006838924 0.8797785 0.9388678 0.3609470     2
# Variables not shown: logLik (dbl), AIC (dbl), BIC (dbl), deviance (dbl),
#   df.residual (int)
fitted_models %>% augment(model)
# Source: local data frame [20 x 10]
# Groups: state [2]
# 
#     state   response  year      .fitted   .se.fit     .resid      .hat
#    (fctr)      (dbl) (int)        (dbl)     (dbl)      (dbl)     (dbl)
# 1      CA  0.4547765     1 -0.036769875 0.7215439  0.4915464 0.3454545
# 2      CA  0.1217003     2 -0.009999399 0.6119518  0.1316997 0.2484848
# 3      CA -0.6153836     3  0.016771076 0.5146646 -0.6321546 0.1757576
# 4      CA -0.9978060     4  0.043541551 0.4379605 -1.0413476 0.1272727
# 5      CA  2.1385614     5  0.070312027 0.3940486  2.0682494 0.1030303
# 6      CA -0.3924598     6  0.097082502 0.3940486 -0.4895423 0.1030303
# 7      CA -0.5918738     7  0.123852977 0.4379605 -0.7157268 0.1272727
# 8      CA  0.4671346     8  0.150623453 0.5146646  0.3165112 0.1757576
# 9      CA -1.4958726     9  0.177393928 0.6119518 -1.6732666 0.2484848
# 10     CA  1.7481956    10  0.204164404 0.7215439  1.5440312 0.3454545
# 11     NY -0.6285230     1 -0.257504572 0.5170932 -0.3710185 0.3454545
# 12     NY  1.0566099     2 -0.163651479 0.4385542  1.2202614 0.2484848
# 13     NY -0.5274693     3 -0.069798386 0.3688335 -0.4576709 0.1757576
# 14     NY  0.6097983     4  0.024054706 0.3138637  0.5857436 0.1272727
# 15     NY -1.5511940     5  0.117907799 0.2823942 -1.6691018 0.1030303
# 16     NY  0.7440243     6  0.211760892 0.2823942  0.5322634 0.1030303
# 17     NY  0.1054719     7  0.305613984 0.3138637 -0.2001421 0.1272727
# 18     NY  0.7513057     8  0.399467077 0.3688335  0.3518387 0.1757576
# 19     NY -0.1271655     9  0.493320170 0.4385542 -0.6204857 0.2484848
# 20     NY  1.2154852    10  0.587173262 0.5170932  0.6283119 0.3454545
# Variables not shown: .sigma (dbl), .cooksd (dbl), .std.resid (dbl)

À mon avis est un modèle linéaire mixte une meilleure approche pour ce genre de données. Le code ci-dessous donné dans l'effet fixe la tendance générale. Les effets aléatoires indiquent comment la tendance diffère pour chaque état individuel de la tendance mondiale. La structure de corrélation prend l'auto-corrélation temporelle en compte. Jetez un oeil à Pinheiro et Bates (effets mixtes modèles en S et S-Plus).

library(nlme)
lme(response ~ year, random = ~year|state, correlation = corAR1(~year))

Une bonne solution à l'aide data.table a été publiée ici CrossValidated par @Zach. Je voudrais simplement ajouter qu'il est possible d'obtenir itérativement aussi le coefficient de régression r ^ 2:

## make fake data
    library(data.table)
    set.seed(1)
    dat <- data.table(x=runif(100), y=runif(100), grp=rep(1:2,50))

##calculate the regression coefficient r^2
    dat[,summary(lm(y~x))$r.squared,by=grp]
       grp         V1
    1:   1 0.01465726
    2:   2 0.02256595

ainsi que tous les autres de sortie summary(lm):

dat[,list(r2=summary(lm(y~x))$r.squared , f=summary(lm(y~x))$fstatistic[1] ),by=grp]
   grp         r2        f
1:   1 0.01465726 0.714014
2:   2 0.02256595 1.108173
## make fake data
 ngroups <- 2
 group <- 1:ngroups
 nobs <- 100
 dta <- data.frame(group=rep(group,each=nobs),y=rnorm(nobs*ngroups),x=runif(nobs*ngroups))
 head(dta)
#--------------------
  group          y         x
1     1  0.6482007 0.5429575
2     1 -0.4637118 0.7052843
3     1 -0.5129840 0.7312955
4     1 -0.6612649 0.9028034
5     1 -0.5197448 0.1661308
6     1  0.4240346 0.8944253
#------------ 
## function to extract the results of one model
 foo <- function(z) {
   ## coef and se in a data frame
   mr <- data.frame(coef(summary(lm(y~x,data=z))))
   ## put row names (predictors/indep variables)
   mr$predictor <- rownames(mr)
   mr
 }
 ## see that it works
 foo(subset(dta,group==1))
#=========
              Estimate Std..Error   t.value  Pr...t..   predictor
(Intercept)  0.2176477  0.1919140  1.134090 0.2595235 (Intercept)
x           -0.3669890  0.3321875 -1.104765 0.2719666           x
#----------
## one option: use command by
 res <- by(dta,dta$group,foo)
 res
#=========
dta$group: 1
              Estimate Std..Error   t.value  Pr...t..   predictor
(Intercept)  0.2176477  0.1919140  1.134090 0.2595235 (Intercept)
x           -0.3669890  0.3321875 -1.104765 0.2719666           x
------------------------------------------------------------ 
dta$group: 2
               Estimate Std..Error    t.value  Pr...t..   predictor
(Intercept) -0.04039422  0.1682335 -0.2401081 0.8107480 (Intercept)
x            0.06286456  0.3020321  0.2081387 0.8355526           x

## using package plyr is better
 library(plyr)
 res <- ddply(dta,"group",foo)
 res
#----------
  group    Estimate Std..Error    t.value  Pr...t..   predictor
1     1  0.21764767  0.1919140  1.1340897 0.2595235 (Intercept)
2     1 -0.36698898  0.3321875 -1.1047647 0.2719666           x
3     2 -0.04039422  0.1682335 -0.2401081 0.8107480 (Intercept)
4     2  0.06286456  0.3020321  0.2081387 0.8355526           x

Je maintenant ma réponse est un peu en retard, mais je cherchais une fonctionnalité similaire. Il semblerait la fonction intégrée « par » en R peut aussi faire le groupement facilement:

contient par l'exemple suivant, qui correspond par groupe et extrait les coefficients avec sapply:

require(stats)
## now suppose we want to extract the coefficients by group 
tmp <- with(warpbreaks,
            by(warpbreaks, tension,
               function(x) lm(breaks ~ wool, data = x)))
sapply(tmp, coef)

Je pense qu'il vaut la peine d'ajouter l'approche purrr::map à ce problème.

library(tidyverse)

d <- data.frame(state=rep(c('NY', 'CA'), c(10, 10)),
                                 year=rep(1:10, 2),
                                 response=c(rnorm(10), rnorm(10)))

d %>% 
  group_by(state) %>% 
  nest() %>% 
  mutate(model = map(data, ~lm(response ~ year, data = .)))

Voir la réponse Hiemstra pour d'autres @ Paul idées sur l'utilisation du paquet broom avec ces résultats.

La fonction lm() ci-dessus est un exemple simple. Soit dit en passant, j'imagine que votre base de données contient les colonnes comme dans la forme suivante:

état année var1 var2 y ...

Dans mon point de vue, vous pouvez utiliser le code suivant:

require(base) 
library(base) 
attach(data) # data = your data base
             #state is your label for the states column
modell<-by(data, data$state, function(data) lm(y~I(1/var1)+I(1/var2)))
summary(modell)

La question semble être sur la façon d'appeler des fonctions de régression avec des formules qui sont modifiées dans une boucle.

Voici comment vous pouvez le faire en (utilisant des données RSO diamants):

attach(ggplot2::diamonds)
strCols = names(ggplot2::diamonds)

formula <- list(); model <- list()
for (i in 1:1) {
  formula[[i]] = paste0(strCols[7], " ~ ", strCols[7+i])
  model[[i]] = glm(formula[[i]]) 

  #then you can plot the results or anything else ...
  png(filename = sprintf("diamonds_price=glm(%s).png", strCols[7+i]))
  par(mfrow = c(2, 2))      
  plot(model[[i]])
  dev.off()
  }
Licencié sous: CC-BY-SA avec attribution
Non affilié à StackOverflow
scroll top