Вопрос

Я хочу выполнить линейную регрессию в R, используя lm() функция.Мои данные представляют собой годовой временной ряд с одним полем для года (22 года) и другим для штата (50 штатов).Я хочу подогнать регрессию для каждого состояния, чтобы в конце у меня был вектор ответов lm.Я могу представить себе выполнение цикла for для каждого состояния, затем выполнение регрессии внутри цикла и добавление результатов каждой регрессии к вектору.Однако это не очень похоже на R.В SAS я бы выполнил инструкцию 'by', а в SQL я бы выполнил инструкцию 'group by'.Каков наилучший способ сделать это?

Это было полезно?

Решение

Вот один из способов использования lme4 упаковка.

 library(lme4)
 d <- data.frame(state=rep(c('NY', 'CA'), c(10, 10)),
                 year=rep(1:10, 2),
                 response=c(rnorm(10), rnorm(10)))

 xyplot(response ~ year, groups=state, data=d, type='l')

 fits <- lmList(response ~ year | state, data=d)
 fits
#------------
Call: lmList(formula = response ~ year | state, data = d)
Coefficients:
   (Intercept)        year
CA -1.34420990  0.17139963
NY  0.00196176 -0.01852429

Degrees of freedom: 20 total; 16 residual
Residual standard error: 0.8201316

Другие советы

Вот подход, использующий плир упаковка:

d <- data.frame(
  state = rep(c('NY', 'CA'), 10),
  year = rep(1:10, 2),
  response= rnorm(20)
)

library(plyr)
# Break up d by state, then fit the specified model to each piece and
# return a list
models <- dlply(d, "state", function(df) 
  lm(response ~ year, data = df))

# Apply coef to each model and return a data frame
ldply(models, coef)

# Print the summary of each model
l_ply(models, summary, .print = TRUE)

С 2009 года, dplyr был выпущен, который на самом деле предоставляет очень хороший способ создания такого рода группировки, очень похожий на то, что делает SAS.

library(dplyr)

d <- data.frame(state=rep(c('NY', 'CA'), c(10, 10)),
                year=rep(1:10, 2),
                response=c(rnorm(10), rnorm(10)))
fitted_models = d %>% group_by(state) %>% do(model = lm(response ~ year, data = .))
# Source: local data frame [2 x 2]
# Groups: <by row>
#
#    state   model
#   (fctr)   (chr)
# 1     CA <S3:lm>
# 2     NY <S3:lm>
fitted_models$model
# [[1]]
# 
# Call:
# lm(formula = response ~ year, data = .)
# 
# Coefficients:
# (Intercept)         year  
#    -0.06354      0.02677  
#
#
# [[2]]
# 
# Call:
# lm(formula = response ~ year, data = .)
# 
# Coefficients:
# (Intercept)         year  
#    -0.35136      0.09385  

Чтобы получить коэффициенты и значение Rsquared /p., можно использовать broom посылка.Этот пакет обеспечивает:

три дженерика S3:порядок, в котором кратко излагается модели статистические данные, такие как коэффициенты регрессии;дополнение, которое добавляет столбцы к исходным данным, таким как прогнозы, остатки и назначения кластеров;и glance, который предоставляет сводную статистику на уровне модели в одну строку.

library(broom)
fitted_models %>% tidy(model)
# Source: local data frame [4 x 6]
# Groups: state [2]
# 
#    state        term    estimate  std.error  statistic   p.value
#   (fctr)       (chr)       (dbl)      (dbl)      (dbl)     (dbl)
# 1     CA (Intercept) -0.06354035 0.83863054 -0.0757668 0.9414651
# 2     CA        year  0.02677048 0.13515755  0.1980687 0.8479318
# 3     NY (Intercept) -0.35135766 0.60100314 -0.5846187 0.5749166
# 4     NY        year  0.09385309 0.09686043  0.9689519 0.3609470
fitted_models %>% glance(model)
# Source: local data frame [2 x 12]
# Groups: state [2]
# 
#    state   r.squared adj.r.squared     sigma statistic   p.value    df
#   (fctr)       (dbl)         (dbl)     (dbl)     (dbl)     (dbl) (int)
# 1     CA 0.004879969  -0.119510035 1.2276294 0.0392312 0.8479318     2
# 2     NY 0.105032068  -0.006838924 0.8797785 0.9388678 0.3609470     2
# Variables not shown: logLik (dbl), AIC (dbl), BIC (dbl), deviance (dbl),
#   df.residual (int)
fitted_models %>% augment(model)
# Source: local data frame [20 x 10]
# Groups: state [2]
# 
#     state   response  year      .fitted   .se.fit     .resid      .hat
#    (fctr)      (dbl) (int)        (dbl)     (dbl)      (dbl)     (dbl)
# 1      CA  0.4547765     1 -0.036769875 0.7215439  0.4915464 0.3454545
# 2      CA  0.1217003     2 -0.009999399 0.6119518  0.1316997 0.2484848
# 3      CA -0.6153836     3  0.016771076 0.5146646 -0.6321546 0.1757576
# 4      CA -0.9978060     4  0.043541551 0.4379605 -1.0413476 0.1272727
# 5      CA  2.1385614     5  0.070312027 0.3940486  2.0682494 0.1030303
# 6      CA -0.3924598     6  0.097082502 0.3940486 -0.4895423 0.1030303
# 7      CA -0.5918738     7  0.123852977 0.4379605 -0.7157268 0.1272727
# 8      CA  0.4671346     8  0.150623453 0.5146646  0.3165112 0.1757576
# 9      CA -1.4958726     9  0.177393928 0.6119518 -1.6732666 0.2484848
# 10     CA  1.7481956    10  0.204164404 0.7215439  1.5440312 0.3454545
# 11     NY -0.6285230     1 -0.257504572 0.5170932 -0.3710185 0.3454545
# 12     NY  1.0566099     2 -0.163651479 0.4385542  1.2202614 0.2484848
# 13     NY -0.5274693     3 -0.069798386 0.3688335 -0.4576709 0.1757576
# 14     NY  0.6097983     4  0.024054706 0.3138637  0.5857436 0.1272727
# 15     NY -1.5511940     5  0.117907799 0.2823942 -1.6691018 0.1030303
# 16     NY  0.7440243     6  0.211760892 0.2823942  0.5322634 0.1030303
# 17     NY  0.1054719     7  0.305613984 0.3138637 -0.2001421 0.1272727
# 18     NY  0.7513057     8  0.399467077 0.3688335  0.3518387 0.1757576
# 19     NY -0.1271655     9  0.493320170 0.4385542 -0.6204857 0.2484848
# 20     NY  1.2154852    10  0.587173262 0.5170932  0.6283119 0.3454545
# Variables not shown: .sigma (dbl), .cooksd (dbl), .std.resid (dbl)

На мой взгляд, смешанная линейная модель лучше подходит для такого рода данных.Код ниже дает фиксированный эффект на общую тенденцию.Случайные эффекты показывают, насколько тенденция для каждого отдельного состояния отличается от глобальной тенденции.Корреляционная структура учитывает временную автокорреляцию.Взгляните на Pinheiro & Bates (модели со смешанными эффектами в S и S-Plus).

library(nlme)
lme(response ~ year, random = ~year|state, correlation = corAR1(~year))

Хорошее решение с использованием data.table был опубликован здесь в CrossValidated @Zach.Я бы просто добавил, что можно итеративно получить и коэффициент регрессии r^2:

## make fake data
    library(data.table)
    set.seed(1)
    dat <- data.table(x=runif(100), y=runif(100), grp=rep(1:2,50))

##calculate the regression coefficient r^2
    dat[,summary(lm(y~x))$r.squared,by=grp]
       grp         V1
    1:   1 0.01465726
    2:   2 0.02256595

а также весь остальной вывод из summary(lm):

dat[,list(r2=summary(lm(y~x))$r.squared , f=summary(lm(y~x))$fstatistic[1] ),by=grp]
   grp         r2        f
1:   1 0.01465726 0.714014
2:   2 0.02256595 1.108173
## make fake data
 ngroups <- 2
 group <- 1:ngroups
 nobs <- 100
 dta <- data.frame(group=rep(group,each=nobs),y=rnorm(nobs*ngroups),x=runif(nobs*ngroups))
 head(dta)
#--------------------
  group          y         x
1     1  0.6482007 0.5429575
2     1 -0.4637118 0.7052843
3     1 -0.5129840 0.7312955
4     1 -0.6612649 0.9028034
5     1 -0.5197448 0.1661308
6     1  0.4240346 0.8944253
#------------ 
## function to extract the results of one model
 foo <- function(z) {
   ## coef and se in a data frame
   mr <- data.frame(coef(summary(lm(y~x,data=z))))
   ## put row names (predictors/indep variables)
   mr$predictor <- rownames(mr)
   mr
 }
 ## see that it works
 foo(subset(dta,group==1))
#=========
              Estimate Std..Error   t.value  Pr...t..   predictor
(Intercept)  0.2176477  0.1919140  1.134090 0.2595235 (Intercept)
x           -0.3669890  0.3321875 -1.104765 0.2719666           x
#----------
## one option: use command by
 res <- by(dta,dta$group,foo)
 res
#=========
dta$group: 1
              Estimate Std..Error   t.value  Pr...t..   predictor
(Intercept)  0.2176477  0.1919140  1.134090 0.2595235 (Intercept)
x           -0.3669890  0.3321875 -1.104765 0.2719666           x
------------------------------------------------------------ 
dta$group: 2
               Estimate Std..Error    t.value  Pr...t..   predictor
(Intercept) -0.04039422  0.1682335 -0.2401081 0.8107480 (Intercept)
x            0.06286456  0.3020321  0.2081387 0.8355526           x

## using package plyr is better
 library(plyr)
 res <- ddply(dta,"group",foo)
 res
#----------
  group    Estimate Std..Error    t.value  Pr...t..   predictor
1     1  0.21764767  0.1919140  1.1340897 0.2595235 (Intercept)
2     1 -0.36698898  0.3321875 -1.1047647 0.2719666           x
3     2 -0.04039422  0.1682335 -0.2401081 0.8107480 (Intercept)
4     2  0.06286456  0.3020321  0.2081387 0.8355526           x

Теперь мой ответ приходит немного поздно, но я искал аналогичную функциональность.Казалось бы, встроенная функция «by» в R также может легко выполнить группировку:

?by содержит следующий пример, который подходит для каждой группы и извлекает коэффициенты с помощью sapply:

require(stats)
## now suppose we want to extract the coefficients by group 
tmp <- with(warpbreaks,
            by(warpbreaks, tension,
               function(x) lm(breaks ~ wool, data = x)))
sapply(tmp, coef)

думаю стоит добавить purrr::map подход к этой проблеме.

library(tidyverse)

d <- data.frame(state=rep(c('NY', 'CA'), c(10, 10)),
                                 year=rep(1:10, 2),
                                 response=c(rnorm(10), rnorm(10)))

d %>% 
  group_by(state) %>% 
  nest() %>% 
  mutate(model = map(data, ~lm(response ~ year, data = .)))

Дополнительные идеи по использованию см. в ответе @Paul Hiemstra. broom пакет с этими результатами.

Тот Самый lm() приведенная выше функция является простым примером.Кстати, я полагаю, что ваша база данных содержит столбцы, как в следующем виде:

состояние года var1 var2 y...

На мой взгляд, вы можете использовать следующий код:

require(base) 
library(base) 
attach(data) # data = your data base
             #state is your label for the states column
modell<-by(data, data$state, function(data) lm(y~I(1/var1)+I(1/var2)))
summary(modell)

Кажется, вопрос в том, как вызывать функции регрессии с формулами, которые изменяются внутри цикла.

Вот как вы можете это сделать (используя набор данных алмазов):

attach(ggplot2::diamonds)
strCols = names(ggplot2::diamonds)

formula <- list(); model <- list()
for (i in 1:1) {
  formula[[i]] = paste0(strCols[7], " ~ ", strCols[7+i])
  model[[i]] = glm(formula[[i]]) 

  #then you can plot the results or anything else ...
  png(filename = sprintf("diamonds_price=glm(%s).png", strCols[7+i]))
  par(mfrow = c(2, 2))      
  plot(model[[i]])
  dev.off()
  }
Лицензировано под: CC-BY-SA с атрибуция
Не связан с StackOverflow
scroll top