Toute suggestion pour faire une opération arbitraire, en utilisant des arguments de type donné arbitraires?

StackOverflow https://stackoverflow.com/questions/2377636

Question

Fondamentalement, je veux juste faire une opération arbitraire en utilisant des arguments donnés des types arbitraires.

classe de base de type Argument est Var et fonctionnement est classe de base de l'opération qui exécuté pour les arguments donnés.

Je classe Evaluator, qui détiennent une collection d'opérateurs qui mappée en utilisant opid. Évaluateur fera opération basée sur la fonction donnée dans l'argument opid évaluer () fonction membre, puis évaluer () fera la recherche pour l'opérateur pris en charge qui accepte le type d'argument et opid.

ce que je veux poser est, est-il modèle efficace ou d'un algorithme qui va le faire sans dynamic_cast <> et / ou en boucle à travers la collecte de l'opérateur .

`

class Var {
public:
    bool isValidVar();
    static Var invalidVar();
}

template<typename T> class VarT : public Var {
public:
    virtual const T getValue() const;   
}

class Operator {
public:
    virtual Var evaluate(const Var& a, const Var& b) = 0;
}

template<typename T> class AddOperator : public Operator {
public:
    virtual Var evaluate(const Var& a, const Var& b)
    {                             //dynamic_cast is slow!
        const VarT<T>* varA = dynamic_cast<const VarT<T>*>(&a);
        const VarT<T>* varB = dynamic_cast<const VarT<T>*>(&b);
        if(varA && varB)          //operation supported
        {
            return VarT<T>(varA->getValue() + varA->getValue());
        }
        return Var::invalidVar(); //operation for this type is not supported
    }
}

class Evaluator {
private:
    std::map<int,std::vector<Operator>> operatorMap;
public:
    virtual Var evaluate(const Var& a, const Var& b,int opId)
    {
        std::map<int,std::vector<Operator>>::iterator it = this->operatorMap.find(opId);
        if(it != this->operatorMap.end())
        {
            for(size_t i=0 ; i<it->second.size() ; i++)
            {
                Var result = it->second.at(i).evaluate(a,b);
                if(result.isValidVar())
                {
                    return result;
                }
            }
        }
        //no operator mapped, or no operator support the type
        return Var::invalidVar();
    }
}

`

Était-ce utile?

La solution

si vous ne voulez pas utiliser dynamic_cast, pensez à ajouter des caractéristiques de type dans votre conception.

Ajouté 05/03/10: L'exemple suivant démontrera comment fonctionne-exécution traits

CommonHeader.h

#ifndef GENERIC_HEADER_INCLUDED
#define GENERIC_HEADER_INCLUDED

#include <map>
#include <vector>
#include <iostream>

// Default template
template <class T>
struct type_traits
{
    static const int typeId = 0;
    static const int getId() { return typeId; }
};

class Var 
{
public:
    virtual ~Var() {}
    virtual int     getType() const = 0;
    virtual void    print() const = 0;
};

template<typename T> 
class VarT  : public Var
{
    T value;
public:
    VarT(const T& v): value(v) {}
    virtual int     getType() const { return type_traits<T>::getId();   };
    virtual void    print() const { std::cout << value << std::endl;    };
    const T& getValue() const { return value; }
};

class Operator 
{
public:
    virtual ~Operator() {}
    virtual Var* evaluate(const Var& a, const Var& b) const = 0;
};

template<typename T> 
class AddOperator : public Operator
{
public:

    virtual Var* evaluate(const Var& a, const Var& b) const
    {   
        // Very basic condition guarding
        // Allow operation within similar type only
        // else have to create additional compatibility checker 
        // ie. AddOperator<Matrix> for Matrix & int
        // it will also requires complicated value retrieving mechanism
        // as static_cast no longer can be used due to unknown type.
        if ( (a.getType() == b.getType())                   &&
             (a.getType() == type_traits<T>::getId())       &&
             (b.getType() != type_traits<void>::getId())  )
        {
            const VarT<T>* varA = static_cast<const VarT<T>*>(&a);
            const VarT<T>* varB = static_cast<const VarT<T>*>(&b);

            return new VarT<T>(varA->getValue() + varB->getValue());
        }
        return 0;
    }
};


class Evaluator {
private:
    std::map<int, std::vector<Operator*>> operatorMap;
public:
    void registerOperator(Operator* pOperator, int iCategory)
    {
        operatorMap[iCategory].push_back( pOperator );
    }

    virtual Var* evaluate(const Var& a, const Var& b, int opId)
    {
        Var* pResult = 0;
        std::vector<Operator*>& opList = operatorMap.find(opId)->second;
        for (   std::vector<Operator*>::const_iterator opIter = opList.begin();
                opIter != opList.end();
                opIter++    )
        {
            pResult = (*opIter)->evaluate( a, b );
            if (pResult)
                break;
        }

        return pResult;
    }
};

#endif

En-tête DataProvider

#ifdef OBJECTA_EXPORTS
#define OBJECTA_API __declspec(dllexport)
#else
#define OBJECTA_API __declspec(dllimport)
#endif

// This is the "common" header
#include "CommonHeader.h"

class CFraction 
{
public:
    CFraction(void);
    CFraction(int iNum, int iDenom);
    CFraction(const CFraction& src);

    int m_iNum;
    int m_iDenom;
};

extern "C" OBJECTA_API Operator*    createOperator();
extern "C" OBJECTA_API Var*         createVar();

mise en œuvre DataProvider

#include "Fraction.h"

// user-type specialization
template<>
struct type_traits<CFraction>
{
    static const int typeId = 10;
    static const int getId() { return typeId; }
};

std::ostream&   operator<<(std::ostream& os, const CFraction& data)
{
    return os << "Numerator : " << data.m_iNum << " @ Denominator : " << data.m_iDenom << std::endl;
}

CFraction   operator+(const CFraction& lhs, const CFraction& rhs)
{
    CFraction   obj;
    obj.m_iNum = (lhs.m_iNum * rhs.m_iDenom) + (rhs.m_iNum * lhs.m_iDenom);
    obj.m_iDenom = lhs.m_iDenom * rhs.m_iDenom;
    return obj;
}

OBJECTA_API Operator* createOperator(void)
{
    return new AddOperator<CFraction>;
}
OBJECTA_API Var* createVar(void)
{
    return new VarT<CFraction>( CFraction(1,4) );
}

CFraction::CFraction() :
m_iNum (0),
m_iDenom (0)
{
}
CFraction::CFraction(int iNum, int iDenom) :
m_iNum (iNum),
m_iDenom (iDenom)
{
}
CFraction::CFraction(const CFraction& src) :
m_iNum (src.m_iNum),
m_iDenom (src.m_iDenom)
{
}

DataConsumer

#include "CommonHeader.h"
#include "windows.h"

// user-type specialization
template<>
struct type_traits<int>
{
    static const int typeId = 1;
    static const int getId() { return typeId; }
};

int main()
{
    Evaluator e;

    HMODULE hModuleA = LoadLibrary( "ObjectA.dll" );

    if (hModuleA)
    {
        FARPROC pnProcOp = GetProcAddress(hModuleA, "createOperator");
        FARPROC pnProcVar = GetProcAddress(hModuleA, "createVar");

        // Prepare function pointer
        typedef Operator*   (*FACTORYOP)();
        typedef Var*        (*FACTORYVAR)();

        FACTORYOP fnCreateOp = reinterpret_cast<FACTORYOP>(pnProcOp);
        FACTORYVAR fnCreateVar = reinterpret_cast<FACTORYVAR>(pnProcVar);

        // Create object
        Operator*   pOp = fnCreateOp();
        Var*        pVar = fnCreateVar();

        AddOperator<int> intOp;
        AddOperator<double> doubleOp;
        e.registerOperator( &intOp, 0 );
        e.registerOperator( &doubleOp, 0 );
        e.registerOperator( pOp, 0 );

        VarT<int> i1(10);
        VarT<double> d1(2.5);
        VarT<float> f1(1.0f);

        std::cout << "Int Obj id : " << i1.getType() << std::endl;
        std::cout << "Double Obj id : " << d1.getType() << std::endl;
        std::cout << "Float Obj id : " << f1.getType() << std::endl;
        std::cout << "Import Obj id : " << pVar->getType() << std::endl;

        Var* i_result = e.evaluate(i1, i1, 0); // result = 20
        Var* d_result = e.evaluate(d1, d1, 0); // no result
        Var* f_result = e.evaluate(f1, f1, 0); // no result
        Var* obj_result = e.evaluate(*pVar, *pVar, 0); // result depend on data provider
        Var* mixed_result1 = e.evaluate(f1, d1, 0); // no result
        Var* mixed_result2 = e.evaluate(*pVar, i1, 0); // no result

        obj_result->print();
        FreeLibrary( hModuleA );
    }
    return 0;
}

Autres conseils

Si vous pouvez modifier le type Var vous pouvez ajouter type Ids pour les types d'arguments. Mais dans la mise en œuvre de vos opérations, vous auriez toujours d'utiliser un dynamic_cast à un moment donné. Si vos types et opérations sont fixés à la compilation, vous pouvez faire tout cela avec des modèles en utilisant Boost.MPL (en particulier les conteneurs).

Votre exemple de code contient de nombreuses erreurs, y compris les problèmes de trancher.

Je ne suis pas sûr à 100%, mais je crois me rappeler que vous pouvez utiliser const type_info* comme une clé pour une carte.

Si oui, vous pouvez utiliser quelque chose comme suit. Il est pas exempt de RTTI (type_info), mais depuis Evaluator vérifie déjà les typeids, vous pouvez utiliser un static_cast au lieu d'un dynamic_cast (mais il est pas si important maintenant que le code ne cherche pas aveuglément pour l'opérateur droit d'appliquer ).

Bien sûr, ce qui suit est complètement cassé en termes de gestion de la mémoire. Réimplémentez avec des pointeurs intelligents de votre choix.

#include <map>
#include <typeinfo>
#include <cassert>

#include <iostream>

struct CompareTypeinfo
{
    bool operator()(const std::type_info* a, const std::type_info* b) const
    {
        return a->before(*b);
    }
};

class Var {
public:
    virtual ~Var() {}
    virtual const std::type_info& getType() const = 0;

    virtual void print() const = 0;
};

template<typename T> class VarT : public Var {
    T value;
public:
    VarT(const T& v): value(v) {}
    const T& getValue() const { return value; }
    virtual const std::type_info& getType() const { return typeid(T); }  

    virtual void print() const { std::cout << value << '\n'; } 
};

class Operator {
public:
    virtual ~Operator() {}
    virtual Var* evaluate(const Var& a, const Var& b) const = 0;
    virtual const std::type_info& getType() const = 0;
};

template<typename T> class AddOperator : public Operator {
public:
    typedef T type;
    virtual const std::type_info& getType() const { return typeid(T); }
    virtual Var* evaluate(const Var& a, const Var& b) const
    {   
        //it is the responsibility of Evaluator to make sure that the types match the operator            
        const VarT<T>* varA = static_cast<const VarT<T>*>(&a);
        const VarT<T>* varB = static_cast<const VarT<T>*>(&b);

        return new VarT<T>(varA->getValue() + varB->getValue());
    }
};

class Evaluator {
private:
    typedef std::map<const std::type_info*, Operator*, CompareTypeinfo> TypedOpMap;
    typedef std::map<int, TypedOpMap> OpMap;
    OpMap operatorMap;
public:
    template <class Op>
    void registerOperator(int opId)
    {
        operatorMap[opId].insert(std::make_pair(&typeid(typename Op::type), new Op));
    }
    Var* evaluate(const Var& a, const Var& b,int opId)
    {
        OpMap::const_iterator op = operatorMap.find(opId);
        if (op != operatorMap.end() && a.getType() == b.getType()) {
            TypedOpMap::const_iterator typed_op = op->second.find(&a.getType());
            if (typed_op != op->second.end()) {
                //double-checked
                assert(typed_op->second->getType() == a.getType());
                return typed_op->second->evaluate(a, b);
            }
        }
        return 0;
    }
};

int main()
{
    Evaluator e;

    e.registerOperator<AddOperator<int> >(0);
    e.registerOperator<AddOperator<double> >(0);

    VarT<int> i1(10), i2(20);
    VarT<double> d1(2.5), d2(1.5);
    VarT<float> f1(1.0), f2(2.0);

    Var* i_result = e.evaluate(i1, i2, 0);
    Var* d_result = e.evaluate(d1, d2, 0);
    Var* f_result = e.evaluate(f1, f2, 0);
    Var* mixed_result = e.evaluate(i1, d2, 0);

    assert(i_result != 0);
    assert(d_result != 0);
    assert(f_result == 0); //addition not defined for floats in Evaluator
    assert(mixed_result == 0); //and never for mixed types

    i_result->print(); //30
    d_result->print(); //4.0
}
Licencié sous: CC-BY-SA avec attribution
Non affilié à StackOverflow
scroll top