Question

Je compile un peu de code à l'aide des paramètres suivants dans VC ++ 2010: / O2 / Ob2 / Oi / Ot

Cependant, je vais avoir du mal à comprendre certaines parties de l'ensemble généré, je mets quelques questions dans le code sous forme de commentaires.

En outre, quelle distance préchargement est généralement recommandé sur CPUs moderne? J'OfC test sur mon cpu, mais j'espérais une valeur qui va bien travailler sur un plus large éventail de CPUs. Peut-être que l'on pourrait utiliser des distances préchargement dynamique?

<- EDIT:

Une autre chose que je suis surpris que le compilateur ne entrelacer sous une forme les instructions de movdqa et movntdq? Étant donné que ces instructions sont en quelque asynchrone sens de ma compréhension.

Ce code suppose également 32 octets lignes de cache lorsque cependant préchargement, il semble que CPUs haut de gamme ont 64 cachelines d'octets, donc 2 des prélectures peuvent probablement être enlevés.

->

void memcpy_aligned_x86(void* dest, const void* source, size_t size)
{ 
0052AC20  push        ebp  
0052AC21  mov         ebp,esp  
 const __m128i* source_128 = reinterpret_cast<const __m128i*>(source);

 for(size_t n = 0; n < size/16; n += 8) 
0052AC23  mov         edx,dword ptr [size]  
0052AC26  mov         ecx,dword ptr [dest]  
0052AC29  mov         eax,dword ptr [source]  
0052AC2C  shr         edx,4  
0052AC2F  test        edx,edx  
0052AC31  je          copy+9Eh (52ACBEh)  
 __m128i xmm0 = _mm_setzero_si128();
 __m128i xmm1 = _mm_setzero_si128();
 __m128i xmm2 = _mm_setzero_si128();
 __m128i xmm3 = _mm_setzero_si128();
 __m128i xmm4 = _mm_setzero_si128();
 __m128i xmm5 = _mm_setzero_si128();
 __m128i xmm6 = _mm_setzero_si128();
 __m128i xmm7 = _mm_setzero_si128();

 __m128i* dest_128 = reinterpret_cast<__m128i*>(dest);
0052AC37  push        esi  
0052AC38  push        edi  
0052AC39  lea         edi,[edx-1]  
0052AC3C  shr         edi,3  
0052AC3F  inc         edi  
 {
  _mm_prefetch(reinterpret_cast<const char*>(source_128+8), _MM_HINT_NTA);
  _mm_prefetch(reinterpret_cast<const char*>(source_128+10), _MM_HINT_NTA);
  _mm_prefetch(reinterpret_cast<const char*>(source_128+12), _MM_HINT_NTA);
  _mm_prefetch(reinterpret_cast<const char*>(source_128+14), _MM_HINT_NTA);

  xmm0 = _mm_load_si128(source_128++);
  xmm1 = _mm_load_si128(source_128++);
  xmm2 = _mm_load_si128(source_128++);
  xmm3 = _mm_load_si128(source_128++);
  xmm4 = _mm_load_si128(source_128++);
  xmm5 = _mm_load_si128(source_128++);
  xmm6 = _mm_load_si128(source_128++);
  xmm7 = _mm_load_si128(source_128++);
0052AC40  movdqa      xmm6,xmmword ptr [eax+70h]  // 1. Why is this moved before the pretecthes?
0052AC45  prefetchnta [eax+80h]  
0052AC4C  prefetchnta [eax+0A0h]  
0052AC53  prefetchnta [eax+0C0h]  
0052AC5A  prefetchnta [eax+0E0h]  
0052AC61  movdqa      xmm0,xmmword ptr [eax+10h]  
0052AC66  movdqa      xmm1,xmmword ptr [eax+20h]  
0052AC6B  movdqa      xmm2,xmmword ptr [eax+30h]  
0052AC70  movdqa      xmm3,xmmword ptr [eax+40h]  
0052AC75  movdqa      xmm4,xmmword ptr [eax+50h]  
0052AC7A  movdqa      xmm5,xmmword ptr [eax+60h]  
0052AC7F  lea         esi,[eax+70h]  // 2. What is happening in these 2 lines?
0052AC82  mov         edx,eax        //
0052AC84  movdqa      xmm7,xmmword ptr [edx]  // 3. Why edx? and not simply eax?

  _mm_stream_si128(dest_128++, xmm0);
0052AC88  mov         esi,ecx  // 4. Is esi never used?
0052AC8A  movntdq     xmmword ptr [esi],xmm7  
  _mm_stream_si128(dest_128++, xmm1);
0052AC8E  movntdq     xmmword ptr [ecx+10h],xmm0  
  _mm_stream_si128(dest_128++, xmm2);
0052AC93  movntdq     xmmword ptr [ecx+20h],xmm1  
  _mm_stream_si128(dest_128++, xmm3);
0052AC98  movntdq     xmmword ptr [ecx+30h],xmm2  
  _mm_stream_si128(dest_128++, xmm4);
0052AC9D  movntdq     xmmword ptr [ecx+40h],xmm3  
  _mm_stream_si128(dest_128++, xmm5);
0052ACA2  movntdq     xmmword ptr [ecx+50h],xmm4  
  _mm_stream_si128(dest_128++, xmm6);
0052ACA7  movntdq     xmmword ptr [ecx+60h],xmm5  
  _mm_stream_si128(dest_128++, xmm7);
0052ACAC  lea         edx,[ecx+70h]  
0052ACAF  sub         eax,0FFFFFF80h  
0052ACB2  sub         ecx,0FFFFFF80h  
0052ACB5  dec         edi  
0052ACB6  movntdq     xmmword ptr [edx],xmm6  // 5. Why not simply ecx?
0052ACBA  jne         copy+20h (52AC40h)  
0052ACBC  pop         edi  
0052ACBD  pop         esi  
 }
}

code original:

void memcpy_aligned_x86(void* dest, const void* source, size_t size)
{ 
 assert(dest != nullptr);
 assert(source != nullptr);
 assert(source != dest);
 assert(size % 128 == 0);

 __m128i xmm0 = _mm_setzero_si128();
 __m128i xmm1 = _mm_setzero_si128();
 __m128i xmm2 = _mm_setzero_si128();
 __m128i xmm3 = _mm_setzero_si128();
 __m128i xmm4 = _mm_setzero_si128();
 __m128i xmm5 = _mm_setzero_si128();
 __m128i xmm6 = _mm_setzero_si128();
 __m128i xmm7 = _mm_setzero_si128();

 __m128i* dest_128 = reinterpret_cast<__m128i*>(dest);
 const __m128i* source_128 = reinterpret_cast<const __m128i*>(source);

 for(size_t n = 0; n < size/16; n += 8) 
 {
  _mm_prefetch(reinterpret_cast<const char*>(source_128+8), _MM_HINT_NTA);
  _mm_prefetch(reinterpret_cast<const char*>(source_128+10), _MM_HINT_NTA);
  _mm_prefetch(reinterpret_cast<const char*>(source_128+12), _MM_HINT_NTA);
  _mm_prefetch(reinterpret_cast<const char*>(source_128+14), _MM_HINT_NTA);

  xmm0 = _mm_load_si128(source_128++);
  xmm1 = _mm_load_si128(source_128++);
  xmm2 = _mm_load_si128(source_128++);
  xmm3 = _mm_load_si128(source_128++);
  xmm4 = _mm_load_si128(source_128++);
  xmm5 = _mm_load_si128(source_128++);
  xmm6 = _mm_load_si128(source_128++);
  xmm7 = _mm_load_si128(source_128++);

  _mm_stream_si128(dest_128++, xmm0);
  _mm_stream_si128(dest_128++, xmm1);
  _mm_stream_si128(dest_128++, xmm2);
  _mm_stream_si128(dest_128++, xmm3);
  _mm_stream_si128(dest_128++, xmm4);
  _mm_stream_si128(dest_128++, xmm5);
  _mm_stream_si128(dest_128++, xmm6);
  _mm_stream_si128(dest_128++, xmm7);
 }
}
Était-ce utile?

La solution

eax + lecture de 70h est déplacé parce que eax + 70h est dans une autre ligne de cache de eax, et le compilateur veut probablement le prefetcher matériel pour obtenir occupés à cette ligne le plus rapidement possible.

Il ne entrelacer soit parce qu'elle veut maximiser les performances en évitant les dépendances de charge à magasin (même si le guide d'optimisation AMD dit explicitement Interleave), ou tout simplement parce qu'il ne sait pas que les magasins seront charges ne écrasent pas. Est-ce que ça change le comportement si vous ajoutez des mots clés __restrict à la source et dest?

Le but du reste de celui-ci me échappe aussi. Peut-être quelques décodage d'instructions obscures ou considérations Prefetcher matériel, que ce soit pour AMD ou Intel, mais je ne peux trouver aucune justification. Je me demande si le code devient plus rapide ou plus lent lorsque vous supprimez ces instructions?

La distance préchargement recommandée dépend de la taille de la boucle. Doit être suffisamment loin que les données a le temps d'arriver de la mémoire au moment où il est nécessaire. Je pense que vous devez généralement il donner au moins 100 tiques d'horloge.

Autres conseils

Je n'ai pas compris ce que le compilateur fait, mais je dirais que je partage certains de mes résultats des tests. Je l'ai réécrit la fonction dans l'assemblage.

Système: Xeon W3520

4,55 Go / s: memcpy régulière

5,52 Go / s: memcpy en question

5,58 Go / s: memcpy ci-dessous

7,48 Go / s: memcpy ci-dessous multithread

void* memcpy(void* dest, const void* source, size_t num)
{   
    __asm
    {
        mov esi, source;    
        mov edi, dest;   

        mov ebx, num; 
        shr ebx, 7;      

        cpy:
            prefetchnta [esi+80h];
            prefetchnta [esi+0C0h];

            movdqa xmm0, [esi+00h];
            movdqa xmm1, [esi+10h];
            movdqa xmm2, [esi+20h];
            movdqa xmm3, [esi+30h];

            movntdq [edi+00h], xmm0;
            movntdq [edi+10h], xmm1;
            movntdq [edi+20h], xmm2;
            movntdq [edi+30h], xmm3;

            movdqa xmm4, [esi+40h];
            movdqa xmm5, [esi+50h];
            movdqa xmm6, [esi+60h];
            movdqa xmm7, [esi+70h];

            movntdq [edi+40h], xmm4;
            movntdq [edi+50h], xmm5;
            movntdq [edi+60h], xmm6;
            movntdq [edi+70h], xmm7;

            lea edi, [edi+80h];
            lea esi, [esi+80h];
            dec ebx;

        jnz cpy;
    }
    return dest;
}

void* memcpy_tbb(void* dest, const void* source, size_t num)
{   
    tbb::parallel_for(tbb::blocked_range<size_t>(0, num/128), [&](const tbb::blocked_range<size_t>& r)
    {
        memcpy_SSE2_3(reinterpret_cast<char*>(dest) + r.begin()*128, reinterpret_cast<const char*>(source) + r.begin()*128, r.size()*128);
    }, tbb::affinity_partitioner());

    return dest;
}
0052AC82  mov         edx,eax        //
0052AC84  movdqa      xmm7,xmmword ptr [edx]  // 3. Why edx? and not simply eax? <--

parce qu'il veut propably de diviser le chemin de données si cette instruction

0052ACAF  sub         eax,0FFFFFF80h  

peut être exécuté en parallèle.

Numéro de Point 4 pourrait être un indice pour la prefetcher ... propably (parce que sinon il ne fait aucun sens, pourrait aussi être un compilateur / optimiseur bug / bizarrerie).

Je n'ai aucune idée sur le point 5

Licencié sous: CC-BY-SA avec attribution
Non affilié à StackOverflow
scroll top