Domanda

Ho un contenitore vector < int > che ha numeri interi (ad esempio {1,2,3,4}) e vorrei convertirmi in una stringa del modulo

"1,2,3,4"

Qual è il modo più pulito per farlo in C ++? In Python è così che lo farei:

>>> array = [1,2,3,4]
>>> ",".join(map(str,array))
'1,2,3,4'
È stato utile?

Soluzione

Sicuramente non elegante come Python, ma niente è altrettanto elegante di Python in C ++.

Puoi usare un stringstream ...

std::stringstream ss;
for(size_t i = 0; i < v.size(); ++i)
{
  if(i != 0)
    ss << ",";
  ss << v[i];
}
std::string s = ss.str();

Puoi anche usare std :: for_each .

Altri suggerimenti

Usando std :: for_each e lambda puoi fare qualcosa di interessante.

#include <iostream>
#include <sstream>

int main()
{
     int  array[] = {1,2,3,4};
     std::for_each(std::begin(array), std::end(array),
                   [&std::cout, sep=' '](int x) mutable {
                       out << sep << x; sep=',';
                   });
}

Vedi questa domanda per una piccola lezione che ho scritto. Questo non stamperà la virgola finale. Anche se assumiamo che C ++ 14 continui a fornirci equivalenti basati su range di algoritmi come questo:

namespace std {
   // I am assuming something like this in the C++14 standard
   // I have no idea if this is correct but it should be trivial to write if it  does not appear.
   template<typename C, typename I>
   void copy(C const& container, I outputIter) {copy(begin(container), end(container), outputIter);}
}
using POI = PrefexOutputIterator;   
int main()
{
     int  array[] = {1,2,3,4};
     std::copy(array, POI(std::cout, ","));
  // ",".join(map(str,array))               // closer
}

Puoi usare std :: accumulate. Considera il seguente esempio

if (v.empty() 
    return std::string();
std::string s = std::accumulate(v.begin()+1, v.end(), std::to_string(v[0]),
                     [](const std::string& a, int b){
                           return a + ',' + std::to_string(b);
                     });

Un'altra alternativa è l'uso di std :: copy e della classe ostream_iterator :

#include <iterator>  // ostream_iterator
#include <sstream>   // ostringstream
#include <algorithm> // copy

std::ostringstream stream;
std::copy(array.begin(), array.end(), std::ostream_iterator<>(stream));
std::string s=stream.str();
s.erase(s.length()-1);

Inoltre non è carino come Python. A tale scopo, ho creato una funzione join :

template <class T, class A>
T join(const A &begin, const A &end, const T &t)
{
  T result;
  for (A it=begin;
       it!=end;
       it++)
  {
    if (!result.empty())
      result.append(t);
    result.append(*it);
  }
  return result;
}

Quindi l'ho usato in questo modo:

std::string s=join(array.begin(), array.end(), std::string(","));

Potresti chiederti perché ho passato gli iteratori. Bene, in realtà volevo invertire l'array, quindi l'ho usato in questo modo:

std::string s=join(array.rbegin(), array.rend(), std::string(","));

Idealmente, vorrei creare un modello al punto da poter inferire il tipo di carattere e utilizzare flussi di stringhe, ma non sono ancora riuscito a capirlo.

Con Boost e C ++ 11 questo potrebbe essere ottenuto in questo modo:

auto array = {1,2,3,4};
join(array | transformed(tostr), ",");

Beh, quasi. Ecco l'esempio completo:

#include <array>
#include <iostream>

#include <boost/algorithm/string/join.hpp>
#include <boost/range/adaptor/transformed.hpp>

int main() {
    using boost::algorithm::join;
    using boost::adaptors::transformed;
    auto tostr = static_cast<std::string(*)(int)>(std::to_string);

    auto array = {1,2,3,4};
    std::cout << join(array | transformed(tostr), ",") << std::endl;

    return 0;
}

Ringraziamo Praetorian .

Puoi gestire qualsiasi tipo di valore come questo:

template<class Container>
std::string join(Container const & container, std::string delimiter) {
  using boost::algorithm::join;
  using boost::adaptors::transformed;
  using value_type = typename Container::value_type;

  auto tostr = static_cast<std::string(*)(value_type)>(std::to_string);
  return join(container | transformed(tostr), delimiter);
};

Questo è solo un tentativo di risolvere l'enigma dato da Osservazione di 1800 INFORMATION sulla sua seconda soluzione priva di genericità, non un tentativo di rispondere alla domanda:

template <class Str, class It>
Str join(It begin, const It end, const Str &sep)
{
  typedef typename Str::value_type     char_type;
  typedef typename Str::traits_type    traits_type;
  typedef typename Str::allocator_type allocator_type;
  typedef std::basic_ostringstream<char_type,traits_type,allocator_type>
                                       ostringstream_type;
  ostringstream_type result;

  if(begin!=end)
    result << *begin++;
  while(begin!=end) {
    result << sep;
    result << *begin++;
  }
  return result.str();
}

Funziona su My Machine (TM).

Un sacco di template / idee. Il mio non è così generico o efficiente, ma ho avuto lo stesso problema e volevo buttarlo nel mix come qualcosa di breve e dolce. Vince sul numero più corto di linee ... :)

std::stringstream joinedValues;
for (auto value: array)
{
    joinedValues << value << ",";
}
//Strip off the trailing comma
std::string result = joinedValues.str().substr(0,joinedValues.str().size()-1);

Se vuoi fare std :: cout < < join (myVector, ", ") < < std :: endl; , puoi fare qualcosa del tipo:

template <typename C, typename T> class MyJoiner
{
    C &c;
    T &s;
    MyJoiner(C &&container, T&& sep) : c(std::forward<C>(container)), s(std::forward<T>(sep)) {}
public:
    template<typename C, typename T> friend std::ostream& operator<<(std::ostream &o, MyJoiner<C, T> const &mj);
    template<typename C, typename T> friend MyJoiner<C, T> join(C &&container, T&& sep);
};

template<typename C, typename T> std::ostream& operator<<(std::ostream &o, MyJoiner<C, T> const &mj)
{
    auto i = mj.c.begin();
    if (i != mj.c.end())
    {
        o << *i++;
        while (i != mj.c.end())
        {
            o << mj.s << *i++;
        }
    }

    return o;
}

template<typename C, typename T> MyJoiner<C, T> join(C &&container, T&& sep)
{
    return MyJoiner<C, T>(std::forward<C>(container), std::forward<T>(sep));
}

Nota, questa soluzione effettua il join direttamente nel flusso di output anziché creare un buffer secondario e funzionerà con qualsiasi tipo che abbia un operatore < < su un ostream.

Funziona anche dove boost :: algoritmo :: join () fallisce, quando hai un vettore < char * > invece di un vettore < stringa >.

Mi piace la risposta del 1800. Tuttavia, sposterei la prima iterazione fuori dal ciclo poiché il risultato dell'istruzione if cambia solo una volta dopo la prima iterazione

template <class T, class A>
T join(const A &begin, const A &end, const T &t)
{
  T result;
  A it = begin;
  if (it != end) 
  {
   result.append(*it);
   ++it;
  }

  for( ;
       it!=end;
       ++it)
  {
    result.append(t);
    result.append(*it);
  }
  return result;
}

Questo può ovviamente essere ridotto a un minor numero di affermazioni se ti piace:

template <class T, class A>
T join(const A &begin, const A &end, const T &t)
{
  T result;
  A it = begin;
  if (it != end) 
   result.append(*it++);

  for( ; it!=end; ++it)
   result.append(t).append(*it);
  return result;
}

Ci sono alcuni tentativi interessanti di fornire una soluzione elegante al problema. Ho avuto l'idea di utilizzare flussi basati su modelli per rispondere efficacemente al dilemma originale dell'OP. Anche se questo è un vecchio post, spero che i futuri utenti che si imbatteranno in questo troveranno la mia soluzione vantaggiosa.

Innanzitutto, alcune risposte (inclusa la risposta accettata) non promuovono la riutilizzabilità. Poiché C ++ non fornisce un modo elegante per unire le stringhe nella libreria standard (che ho visto), diventa importante crearne uno flessibile e riutilizzabile. Ecco la mia idea:

// Replace with your namespace //
namespace my {
    // Templated join which can be used on any combination of streams, iterators and base types //
    template <typename TStream, typename TIter, typename TSeperator>
    TStream& join(TStream& stream, TIter begin, TIter end, TSeperator seperator) {
        // A flag which, when true, has next iteration prepend our seperator to the stream //
        bool sep = false;                       
        // Begin iterating through our list //
        for (TIter i = begin; i != end; ++i) {
            // If we need to prepend a seperator, do it //
            if (sep) stream << seperator;
            // Stream the next value held by our iterator //
            stream << *i;
            // Flag that next loops needs a seperator //
            sep = true;
        }
        // As a convenience, we return a reference to the passed stream //
        return stream;
    }
}

Ora per usarlo, potresti semplicemente fare qualcosa del tipo:

// Load some data //
std::vector<int> params;
params.push_back(1);
params.push_back(2);
params.push_back(3);
params.push_back(4);

// Store and print our results to standard out //
std::stringstream param_stream;
std::cout << my::join(param_stream, params.begin(), params.end(), ",").str() << std::endl;

// A quick and dirty way to print directly to standard out //
my::join(std::cout, params.begin(), params.end(), ",") << std::endl;

Nota come l'uso di stream rende questa soluzione incredibilmente flessibile in quanto possiamo archiviare il nostro risultato in un flusso di stringhe per recuperarlo in un secondo momento, oppure possiamo scrivere direttamente sullo standard out, un file o persino su una connessione di rete implementata come ruscello. Il tipo in fase di stampa deve essere semplicemente iterabile e compatibile con il flusso di origine. STL offre vari flussi compatibili con un'ampia gamma di tipi. Quindi potresti davvero andare in città con questo. Dalla parte superiore della mia testa, il tuo vettore può essere int, float, double, string, unsigned int, SomeObject * e altro.

string s;
for (auto i : v)
    s += (s.empty() ? "" : ",") + to_string(i);

Ho creato un file di intestazione helper per aggiungere un supporto di join esteso.

Basta aggiungere il codice seguente al file di intestazione generale e includerlo quando necessario.

Esempi di utilizzo:

/* An example for a mapping function. */
ostream&
map_numbers(ostream& os, const void* payload, generic_primitive data)
{
    static string names[] = {"Zero", "One", "Two", "Three", "Four"};
    os << names[data.as_int];
    const string* post = reinterpret_cast<const string*>(payload);
    if (post) {
        os << " " << *post;
    }
    return os;
}

int main() {
    int arr[] = {0,1,2,3,4};
    vector<int> vec(arr, arr + 5);
    cout << vec << endl; /* Outputs: '0 1 2 3 4' */
    cout << join(vec.begin(), vec.end()) << endl; /* Outputs: '0 1 2 3 4' */
    cout << join(vec.begin(), vec.begin() + 2) << endl; /* Outputs: '0 1 2' */
    cout << join(vec.begin(), vec.end(), ", ") << endl; /* Outputs: '0, 1, 2, 3, 4' */
    cout << join(vec.begin(), vec.end(), ", ", map_numbers) << endl; /* Outputs: 'Zero, One, Two, Three, Four' */
    string post = "Mississippi";
    cout << join(vec.begin() + 1, vec.end(), ", ", map_numbers, &post) << endl; /* Outputs: 'One Mississippi, Two mississippi, Three mississippi, Four mississippi' */
    return 0;
}

Il codice dietro la scena:

#include <iostream>
#include <vector>
#include <list>
#include <set>
#include <unordered_set>
using namespace std;

#define GENERIC_PRIMITIVE_CLASS_BUILDER(T) generic_primitive(const T& v) { value.as_##T = v; }
#define GENERIC_PRIMITIVE_TYPE_BUILDER(T) T as_##T;

typedef void* ptr;

/** A union that could contain a primitive or void*,
 *    used for generic function pointers.
 * TODO: add more primitive types as needed.
 */
struct generic_primitive {
    GENERIC_PRIMITIVE_CLASS_BUILDER(int);
    GENERIC_PRIMITIVE_CLASS_BUILDER(ptr);
    union {
        GENERIC_PRIMITIVE_TYPE_BUILDER(int);
        GENERIC_PRIMITIVE_TYPE_BUILDER(ptr);
    };
};

typedef ostream& (*mapping_funct_t)(ostream&, const void*, generic_primitive);
template<typename T>
class Join {
public:
    Join(const T& begin, const T& end,
            const string& separator = " ",
            mapping_funct_t mapping = 0,
            const void* payload = 0):
            m_begin(begin),
            m_end(end),
            m_separator(separator),
            m_mapping(mapping),
            m_payload(payload) {}

    ostream&
    apply(ostream& os) const
    {
        T begin = m_begin;
        T end = m_end;
        if (begin != end)
            if (m_mapping) {
                m_mapping(os, m_payload, *begin++);
            } else {
                os << *begin++;
            }
        while (begin != end) {
            os << m_separator;
            if (m_mapping) {
                m_mapping(os, m_payload, *begin++);
            } else {
                os << *begin++;
            }
        }
        return os;
    }
private:
    const T& m_begin;
    const T& m_end;
    const string m_separator;
    const mapping_funct_t m_mapping;
    const void* m_payload;
};

template <typename T>
Join<T>
join(const T& begin, const T& end,
     const string& separator = " ",
     ostream& (*mapping)(ostream&, const void*, generic_primitive) = 0,
     const void* payload = 0)
{
    return Join<T>(begin, end, separator, mapping, payload);
}

template<typename T>
ostream&
operator<<(ostream& os, const vector<T>& vec) {
    return join(vec.begin(), vec.end()).apply(os);
}

template<typename T>
ostream&
operator<<(ostream& os, const list<T>& lst) {
    return join(lst.begin(), lst.end()).apply(os);
}

template<typename T>
ostream&
operator<<(ostream& os, const set<T>& s) {
    return join(s.begin(), s.end()).apply(os);
}

template<typename T>
ostream&
operator<<(ostream& os, const Join<T>& vec) {
    return vec.apply(os);
}

Ecco una soluzione C ++ 11 generica che ti permetterà di fare

int main() {
    vector<int> v {1,2,3};
    cout << join(v, ", ") << endl;
    string s = join(v, '+').str();
}

Il codice è:

template<typename Iterable, typename Sep>
class Joiner {
    const Iterable& i_;
    const Sep& s_;
public:
    Joiner(const Iterable& i, const Sep& s) : i_(i), s_(s) {}
    std::string str() const {std::stringstream ss; ss << *this; return ss.str();}
    template<typename I, typename S> friend std::ostream& operator<< (std::ostream& os, const Joiner<I,S>& j);
};

template<typename I, typename S>
std::ostream& operator<< (std::ostream& os, const Joiner<I,S>& j) {
    auto elem = j.i_.begin();
    if (elem != j.i_.end()) {
        os << *elem;
        ++elem;
        while (elem != j.i_.end()) {
            os << j.s_ << *elem;
            ++elem;
        }
    }
    return os;
}

template<typename I, typename S>
inline Joiner<I,S> join(const I& i, const S& s) {return Joiner<I,S>(i, s);}

Di seguito è riportato un modo semplice e pratico per convertire elementi in un vettore in una stringa :

std::string join(const std::vector<int>& numbers, const std::string& delimiter = ",") {
    std::ostringstream result;
    for (const auto number : numbers) {
        if (result.tellp() > 0) { // not first round
            result << delimiter;
        }
        result << number;
    }
    return result.str();
}

Devi #include < sstream > per ostringstream .

Espandendo il tentativo di @sbi in una soluzione generica che non è limitata a std :: vector < ; int > o un tipo di stringa di ritorno specifico. Il codice presentato di seguito può essere utilizzato in questo modo:

std::vector<int> vec{ 1, 2, 3 };

// Call modern range-based overload.
auto str     = join( vec,  "," );
auto wideStr = join( vec, L"," );

// Call old-school iterator-based overload.
auto str     = join( vec.begin(), vec.end(),  "," );
auto wideStr = join( vec.begin(), vec.end(), L"," );

Nel codice originale, la deduzione dell'argomento template non funziona per produrre il giusto tipo di stringa di ritorno se il separatore è un valore letterale di stringa (come negli esempi sopra). In questo caso, i typedef come Str :: value_type nel corpo della funzione non sono corretti. Il codice presuppone che Str sia sempre un tipo come std :: basic_string , quindi ovviamente fallisce per i letterali di stringa.

Per risolvere questo problema, il codice seguente tenta di dedurre solo il tipo carattere dall'argomento separatore e lo utilizza per produrre un tipo di stringa di ritorno predefinito. Questo si ottiene utilizzando boost :: range_value , che estrae il tipo di elemento dal tipo range specificato.

#include <string>
#include <sstream>
#include <boost/range.hpp>

template< class Sep, class Str = std::basic_string< typename boost::range_value< Sep >::type >, class InputIt >
Str join( InputIt first, const InputIt last, const Sep& sep )
{
    using char_type          = typename Str::value_type;
    using traits_type        = typename Str::traits_type;
    using allocator_type     = typename Str::allocator_type;
    using ostringstream_type = std::basic_ostringstream< char_type, traits_type, allocator_type >;

    ostringstream_type result;

    if( first != last )
    {
        result << *first++;
    }
    while( first != last ) 
    {
        result << sep << *first++;
    }
    return result.str();
}

Ora possiamo facilmente fornire un sovraccarico basato sull'intervallo che semplicemente inoltra al sovraccarico basato sull'iteratore:

template <class Sep, class Str = std::basic_string< typename boost::range_value<Sep>::type >, class InputRange>
Str join( const InputRange &input, const Sep &sep )
{
    // Include the standard begin() and end() in the overload set for ADL. This makes the 
    // function work for standard types (including arrays), aswell as any custom types 
    // that have begin() and end() member functions or overloads of the standalone functions.
    using std::begin; using std::end;

    // Call iterator-based overload.
    return join( begin(input), end(input), sep );
}

Demo live a Coliru

come ha fatto @capone,

std::string join(const std::vector<std::string> &str_list , 
                 const std::string &delim=" ")
{
    if(str_list.size() == 0) return "" ;
    return std::accumulate( str_list.cbegin() + 1, 
                            str_list.cend(), 
                            str_list.at(0) , 
                            [&delim](const std::string &a , const std::string &b)
                            { 
                                return a + delim + b ;
                            }  ) ; 
}

template <typename ST , typename TT>
std::vector<TT> map(TT (*op)(ST) , const vector<ST> &ori_vec)
{
    vector<TT> rst ;
    std::transform(ori_vec.cbegin() ,
                  ori_vec.cend() , back_inserter(rst) , 
                  [&op](const ST& val){ return op(val)  ;} ) ;
    return rst ;
}

Quindi possiamo chiamare come segue:

int main(int argc , char *argv[])
{
    vector<int> int_vec = {1,2,3,4} ;
    vector<string> str_vec = map<int,string>(to_string, int_vec) ;
    cout << join(str_vec) << endl ;
    return 0 ;
}

proprio come Python:

>>> " ".join( map(str, [1,2,3,4]) )

Uso qualcosa del genere

namespace std
{

// for strings join
string to_string( string value )
{
    return value;
}

} // namespace std

namespace // anonymous
{

template< typename T >
std::string join( const std::vector<T>& values, char delimiter )
{
    std::string result;
    for( typename std::vector<T>::size_type idx = 0; idx < values.size(); ++idx )
    {
        if( idx != 0 )
            result += delimiter;
        result += std::to_string( values[idx] );
    }
    return result;
}

} // namespace anonymous

Ho iniziato con la risposta di @ sbi, ma la maggior parte delle volte ha finito per eseguire il piping della stringa risultante su uno stream, quindi ho creato la soluzione seguente che può essere reindirizzata a uno stream senza l'overhead di creare l'intera stringa in memoria.

È usato come segue:

#include "string_join.h"
#include <iostream>
#include <vector>

int main()
{
  std::vector<int> v = { 1, 2, 3, 4 };
  // String version
  std::string str = join(v, std::string(", "));
  std::cout << str << std::endl;
  // Directly piped to stream version
  std::cout << join(v, std::string(", ")) << std::endl;
}

Dove string_join.h è:

#pragma once

#include <iterator>
#include <sstream>

template<typename Str, typename It>
class joined_strings
{
  private:
    const It begin, end;
    Str sep;

  public:
    typedef typename Str::value_type char_type;
    typedef typename Str::traits_type traits_type;
    typedef typename Str::allocator_type allocator_type;

  private:
    typedef std::basic_ostringstream<char_type, traits_type, allocator_type>
      ostringstream_type;

  public:
    joined_strings(It begin, const It end, const Str &sep)
      : begin(begin), end(end), sep(sep)
    {
    }

    operator Str() const
    {
      ostringstream_type result;
      result << *this;
      return result.str();
    }

    template<typename ostream_type>
    friend ostream_type& operator<<(
      ostream_type &ostr, const joined_strings<Str, It> &joined)
    {
      It it = joined.begin;
      if(it!=joined.end)
        ostr << *it;
      for(++it; it!=joined.end; ++it)
        ostr << joined.sep << *it;
      return ostr;
    }
};

template<typename Str, typename It>
inline joined_strings<Str, It> join(It begin, const It end, const Str &sep)
{
  return joined_strings<Str, It>(begin, end, sep);
}

template<typename Str, typename Container>
inline joined_strings<Str, typename Container::const_iterator> join(
  Container container, const Str &sep)
{
  return join(container.cbegin(), container.cend(), sep);
}

Ho scritto il seguente codice. È basato su C # string.join. Funziona con std :: string e std :: wstring e molti tipi di vettori. (esempi nei commenti)

Chiamalo così:

 std::vector<int> vVectorOfIds = {1, 2, 3, 4, 5};

 std::wstring wstrStringForSQLIn = Join(vVectorOfIds, L',');

Codice:

// Generic Join template (mimics string.Join() from C#)
// Written by RandomGuy (stackoverflow) 09-01-2017
// Based on Brian R. Bondy anwser here:
// http://stackoverflow.com/questions/1430757/c-vector-to-string
// Works with char, wchar_t, std::string and std::wstring delimiters
// Also works with a different types of vectors like ints, floats, longs
template<typename T, typename D>
auto Join(const std::vector<T> &vToMerge, const D &delimiter)
{
    // We use std::conditional to get the correct type for the stringstream (char or wchar_t)
    // stringstream = basic_stringstream<char>, wstringstream = basic_stringstream<wchar_t>
    using strType =
        std::conditional<
        std::is_same<D, std::string>::value,
        char,
            std::conditional<
            std::is_same<D, char>::value,
            char,
            wchar_t
            >::type
        >::type;

    std::basic_stringstream<strType> ss;

    for (size_t i = 0; i < vToMerge.size(); ++i)
    {
        if (i != 0)
            ss << delimiter;
        ss << vToMerge[i];
    }
    return ss.str();
}
Autorizzato sotto: CC-BY-SA insieme a attribuzione
Non affiliato a StackOverflow
scroll top