Domanda

Sto cercando di lavorare con frazioni in Java.

Voglio implementare funzioni aritmetiche. Per questo, per prima cosa richiederò un modo per normalizzare le funzioni. So di non poter aggiungere 1/6 e 1/2 finché non avrò un denominatore comune. Dovrò aggiungere 1/6 e 3/6. Un approccio ingenuo mi farebbe aggiungere 2/12 e 6/12 e quindi ridurlo. Come posso ottenere un denominatore comune con la penalità di prestazione minima? Quale algoritmo è il migliore per questo?


Versione 8 (grazie a hstoerr ):

  

I miglioramenti includono:

     
      
  • il metodo equals () ora è coerente con il metodo compareTo ()
  •   
final class Fraction extends Number {
    private int numerator;
    private int denominator;

    public Fraction(int numerator, int denominator) {
        if(denominator == 0) {
            throw new IllegalArgumentException("denominator is zero");
        }
        if(denominator < 0) {
            numerator *= -1;
            denominator *= -1;
        }
        this.numerator = numerator;
        this.denominator = denominator;
    }

    public Fraction(int numerator) {
        this.numerator = numerator;
        this.denominator = 1;
    }

    public int getNumerator() {
        return this.numerator;
    }

    public int getDenominator() {
        return this.denominator;
    }

    public byte byteValue() {
        return (byte) this.doubleValue();
    }

    public double doubleValue() {
        return ((double) numerator)/((double) denominator);
    }

    public float floatValue() {
        return (float) this.doubleValue();
    }

    public int intValue() {
        return (int) this.doubleValue();
    }

    public long longValue() {
        return (long) this.doubleValue();
    }

    public short shortValue() {
        return (short) this.doubleValue();
    }

    public boolean equals(Fraction frac) {
        return this.compareTo(frac) == 0;
    }

    public int compareTo(Fraction frac) {
        long t = this.getNumerator() * frac.getDenominator();
        long f = frac.getNumerator() * this.getDenominator();
        int result = 0;
        if(t>f) {
            result = 1;
        }
        else if(f>t) {
            result = -1;
        }
        return result;
    }
}

Ho rimosso tutte le versioni precedenti. I miei ringraziamenti a:

È stato utile?

Soluzione

È successo che ho scritto una classe BigFraction non molto tempo fa, per Problemi di Project Euler . Mantiene un numeratore e denominatore BigInteger, quindi non traboccerà mai. Ma sarà un po 'lento per molte operazioni che sai che non trabocceranno mai .. comunque, usalo se lo desideri. Sto morendo dalla voglia di mostrarlo in qualche modo. :)

Modifica : l'ultima e la più grande versione di questo codice, inclusi i test unitari è ora ospitata su GitHub e anche disponibile tramite Maven Central . Lascio qui il mio codice originale in modo che questa risposta non sia solo un link ...


import java.math.*;

/**
 * Arbitrary-precision fractions, utilizing BigIntegers for numerator and
 * denominator.  Fraction is always kept in lowest terms.  Fraction is
 * immutable, and guaranteed not to have a null numerator or denominator.
 * Denominator will always be positive (so sign is carried by numerator,
 * and a zero-denominator is impossible).
 */
public final class BigFraction extends Number implements Comparable<BigFraction>
{
  private static final long serialVersionUID = 1L; //because Number is Serializable
  private final BigInteger numerator;
  private final BigInteger denominator;

  public final static BigFraction ZERO = new BigFraction(BigInteger.ZERO, BigInteger.ONE, true);
  public final static BigFraction ONE = new BigFraction(BigInteger.ONE, BigInteger.ONE, true);

  /**
   * Constructs a BigFraction with given numerator and denominator.  Fraction
   * will be reduced to lowest terms.  If fraction is negative, negative sign will
   * be carried on numerator, regardless of how the values were passed in.
   */
  public BigFraction(BigInteger numerator, BigInteger denominator)
  {
    if(numerator == null)
      throw new IllegalArgumentException("Numerator is null");
    if(denominator == null)
      throw new IllegalArgumentException("Denominator is null");
    if(denominator.equals(BigInteger.ZERO))
      throw new ArithmeticException("Divide by zero.");

    //only numerator should be negative.
    if(denominator.signum() < 0)
    {
      numerator = numerator.negate();
      denominator = denominator.negate();
    }

    //create a reduced fraction
    BigInteger gcd = numerator.gcd(denominator);
    this.numerator = numerator.divide(gcd);
    this.denominator = denominator.divide(gcd);
  }

  /**
   * Constructs a BigFraction from a whole number.
   */
  public BigFraction(BigInteger numerator)
  {
    this(numerator, BigInteger.ONE, true);
  }

  public BigFraction(long numerator, long denominator)
  {
    this(BigInteger.valueOf(numerator), BigInteger.valueOf(denominator));
  }

  public BigFraction(long numerator)
  {
    this(BigInteger.valueOf(numerator), BigInteger.ONE, true);
  }

  /**
   * Constructs a BigFraction from a floating-point number.
   * 
   * Warning: round-off error in IEEE floating point numbers can result
   * in answers that are unexpected.  For example, 
   *     System.out.println(new BigFraction(1.1))
   * will print:
   *     2476979795053773/2251799813685248
   * 
   * This is because 1.1 cannot be expressed exactly in binary form.  The
   * given fraction is exactly equal to the internal representation of
   * the double-precision floating-point number.  (Which, for 1.1, is:
   * (-1)^0 * 2^0 * (1 + 0x199999999999aL / 0x10000000000000L).)
   * 
   * NOTE: In many cases, BigFraction(Double.toString(d)) may give a result
   * closer to what the user expects.
   */
  public BigFraction(double d)
  {
    if(Double.isInfinite(d))
      throw new IllegalArgumentException("double val is infinite");
    if(Double.isNaN(d))
      throw new IllegalArgumentException("double val is NaN");

    //special case - math below won't work right for 0.0 or -0.0
    if(d == 0)
    {
      numerator = BigInteger.ZERO;
      denominator = BigInteger.ONE;
      return;
    }

    final long bits = Double.doubleToLongBits(d);
    final int sign = (int)(bits >> 63) & 0x1;
    final int exponent = ((int)(bits >> 52) & 0x7ff) - 0x3ff;
    final long mantissa = bits & 0xfffffffffffffL;

    //number is (-1)^sign * 2^(exponent) * 1.mantissa
    BigInteger tmpNumerator = BigInteger.valueOf(sign==0 ? 1 : -1);
    BigInteger tmpDenominator = BigInteger.ONE;

    //use shortcut: 2^x == 1 << x.  if x is negative, shift the denominator
    if(exponent >= 0)
      tmpNumerator = tmpNumerator.multiply(BigInteger.ONE.shiftLeft(exponent));
    else
      tmpDenominator = tmpDenominator.multiply(BigInteger.ONE.shiftLeft(-exponent));

    //1.mantissa == 1 + mantissa/2^52 == (2^52 + mantissa)/2^52
    tmpDenominator = tmpDenominator.multiply(BigInteger.valueOf(0x10000000000000L));
    tmpNumerator = tmpNumerator.multiply(BigInteger.valueOf(0x10000000000000L + mantissa));

    BigInteger gcd = tmpNumerator.gcd(tmpDenominator);
    numerator = tmpNumerator.divide(gcd);
    denominator = tmpDenominator.divide(gcd);
  }

  /**
   * Constructs a BigFraction from two floating-point numbers.
   * 
   * Warning: round-off error in IEEE floating point numbers can result
   * in answers that are unexpected.  See BigFraction(double) for more
   * information.
   * 
   * NOTE: In many cases, BigFraction(Double.toString(numerator) + "/" + Double.toString(denominator))
   * may give a result closer to what the user expects.
   */
  public BigFraction(double numerator, double denominator)
  {
    if(denominator == 0)
      throw new ArithmeticException("Divide by zero.");

    BigFraction tmp = new BigFraction(numerator).divide(new BigFraction(denominator));
    this.numerator = tmp.numerator;
    this.denominator = tmp.denominator;
  }

  /**
   * Constructs a new BigFraction from the given BigDecimal object.
   */
  public BigFraction(BigDecimal d)
  {
    this(d.scale() < 0 ? d.unscaledValue().multiply(BigInteger.TEN.pow(-d.scale())) : d.unscaledValue(),
         d.scale() < 0 ? BigInteger.ONE                                             : BigInteger.TEN.pow(d.scale()));
  }

  public BigFraction(BigDecimal numerator, BigDecimal denominator)
  {
    if(denominator.equals(BigDecimal.ZERO))
      throw new ArithmeticException("Divide by zero.");

    BigFraction tmp = new BigFraction(numerator).divide(new BigFraction(denominator));
    this.numerator = tmp.numerator;
    this.denominator = tmp.denominator;
  }

  /**
   * Constructs a BigFraction from a String.  Expected format is numerator/denominator,
   * but /denominator part is optional.  Either numerator or denominator may be a floating-
   * point decimal number, which in the same format as a parameter to the
   * <code>BigDecimal(String)</code> constructor.
   * 
   * @throws NumberFormatException  if the string cannot be properly parsed.
   */
  public BigFraction(String s)
  {
    int slashPos = s.indexOf('/');
    if(slashPos < 0)
    {
      BigFraction res = new BigFraction(new BigDecimal(s));
      this.numerator = res.numerator;
      this.denominator = res.denominator;
    }
    else
    {
      BigDecimal num = new BigDecimal(s.substring(0, slashPos));
      BigDecimal den = new BigDecimal(s.substring(slashPos+1, s.length()));
      BigFraction res = new BigFraction(num, den);
      this.numerator = res.numerator;
      this.denominator = res.denominator;
    }
  }

  /**
   * Returns this + f.
   */
  public BigFraction add(BigFraction f)
  {
    if(f == null)
      throw new IllegalArgumentException("Null argument");

    //n1/d1 + n2/d2 = (n1*d2 + d1*n2)/(d1*d2) 
    return new BigFraction(numerator.multiply(f.denominator).add(denominator.multiply(f.numerator)),
                           denominator.multiply(f.denominator));
  }

  /**
   * Returns this + b.
   */
  public BigFraction add(BigInteger b)
  {
    if(b == null)
      throw new IllegalArgumentException("Null argument");

    //n1/d1 + n2 = (n1 + d1*n2)/d1
    return new BigFraction(numerator.add(denominator.multiply(b)),
                           denominator, true);
  }

  /**
   * Returns this + n.
   */
  public BigFraction add(long n)
  {
    return add(BigInteger.valueOf(n));
  }

  /**
   * Returns this - f.
   */
  public BigFraction subtract(BigFraction f)
  {
    if(f == null)
      throw new IllegalArgumentException("Null argument");

    return new BigFraction(numerator.multiply(f.denominator).subtract(denominator.multiply(f.numerator)),
                           denominator.multiply(f.denominator));
  }

  /**
   * Returns this - b.
   */
  public BigFraction subtract(BigInteger b)
  {
    if(b == null)
      throw new IllegalArgumentException("Null argument");

    return new BigFraction(numerator.subtract(denominator.multiply(b)),
                           denominator, true);
  }

  /**
   * Returns this - n.
   */
  public BigFraction subtract(long n)
  {
    return subtract(BigInteger.valueOf(n));
  }

  /**
   * Returns this * f.
   */
  public BigFraction multiply(BigFraction f)
  {
    if(f == null)
      throw new IllegalArgumentException("Null argument");

    return new BigFraction(numerator.multiply(f.numerator), denominator.multiply(f.denominator));
  }

  /**
   * Returns this * b.
   */
  public BigFraction multiply(BigInteger b)
  {
    if(b == null)
      throw new IllegalArgumentException("Null argument");

    return new BigFraction(numerator.multiply(b), denominator);
  }

  /**
   * Returns this * n.
   */
  public BigFraction multiply(long n)
  {
    return multiply(BigInteger.valueOf(n));
  }

  /**
   * Returns this / f.
   */
  public BigFraction divide(BigFraction f)
  {
    if(f == null)
      throw new IllegalArgumentException("Null argument");

    if(f.numerator.equals(BigInteger.ZERO))
      throw new ArithmeticException("Divide by zero");

    return new BigFraction(numerator.multiply(f.denominator), denominator.multiply(f.numerator));
  }

  /**
   * Returns this / b.
   */
  public BigFraction divide(BigInteger b)
  {
    if(b == null)
      throw new IllegalArgumentException("Null argument");

    if(b.equals(BigInteger.ZERO))
      throw new ArithmeticException("Divide by zero");

    return new BigFraction(numerator, denominator.multiply(b));
  }

  /**
   * Returns this / n.
   */
  public BigFraction divide(long n)
  {
    return divide(BigInteger.valueOf(n));
  }

  /**
   * Returns this^exponent.
   */
  public BigFraction pow(int exponent)
  {
    if(exponent == 0)
      return BigFraction.ONE;
    else if (exponent == 1)
      return this;
    else if (exponent < 0)
      return new BigFraction(denominator.pow(-exponent), numerator.pow(-exponent), true);
    else
      return new BigFraction(numerator.pow(exponent), denominator.pow(exponent), true);
  }

  /**
   * Returns 1/this.
   */
  public BigFraction reciprocal()
  {
    if(this.numerator.equals(BigInteger.ZERO))
      throw new ArithmeticException("Divide by zero");

    return new BigFraction(denominator, numerator, true);
  }

  /**
   * Returns the complement of this fraction, which is equal to 1 - this.
   * Useful for probabilities/statistics.

   */
  public BigFraction complement()
  {
    return new BigFraction(denominator.subtract(numerator), denominator, true);
  }

  /**
   * Returns -this.
   */
  public BigFraction negate()
  {
    return new BigFraction(numerator.negate(), denominator, true);
  }

  /**
   * Returns -1, 0, or 1, representing the sign of this fraction.
   */
  public int signum()
  {
    return numerator.signum();
  }

  /**
   * Returns the absolute value of this.
   */
  public BigFraction abs()
  {
    return (signum() < 0 ? negate() : this);
  }

  /**
   * Returns a string representation of this, in the form
   * numerator/denominator.
   */
  public String toString()
  {
    return numerator.toString() + "/" + denominator.toString();
  }

  /**
   * Returns if this object is equal to another object.
   */
  public boolean equals(Object o)
  {
    if(!(o instanceof BigFraction))
      return false;

    BigFraction f = (BigFraction)o;
    return numerator.equals(f.numerator) && denominator.equals(f.denominator);
  }

  /**
   * Returns a hash code for this object.
   */
  public int hashCode()
  {
    //using the method generated by Eclipse, but streamlined a bit..
    return (31 + numerator.hashCode())*31 + denominator.hashCode();
  }

  /**
   * Returns a negative, zero, or positive number, indicating if this object
   * is less than, equal to, or greater than f, respectively.
   */
  public int compareTo(BigFraction f)
  {
    if(f == null)
      throw new IllegalArgumentException("Null argument");

    //easy case: this and f have different signs
    if(signum() != f.signum())
      return signum() - f.signum();

    //next easy case: this and f have the same denominator
    if(denominator.equals(f.denominator))
      return numerator.compareTo(f.numerator);

    //not an easy case, so first make the denominators equal then compare the numerators 
    return numerator.multiply(f.denominator).compareTo(denominator.multiply(f.numerator));
  }

  /**
   * Returns the smaller of this and f.
   */
  public BigFraction min(BigFraction f)
  {
    if(f == null)
      throw new IllegalArgumentException("Null argument");

    return (this.compareTo(f) <= 0 ? this : f);
  }

  /**
   * Returns the maximum of this and f.
   */
  public BigFraction max(BigFraction f)
  {
    if(f == null)
      throw new IllegalArgumentException("Null argument");

    return (this.compareTo(f) >= 0 ? this : f);
  }

  /**
   * Returns a positive BigFraction, greater than or equal to zero, and less than one.
   */
  public static BigFraction random()
  {
    return new BigFraction(Math.random());
  }

  public final BigInteger getNumerator() { return numerator; }
  public final BigInteger getDenominator() { return denominator; }

  //implementation of Number class.  may cause overflow.
  public byte   byteValue()   { return (byte) Math.max(Byte.MIN_VALUE,    Math.min(Byte.MAX_VALUE,    longValue())); }
  public short  shortValue()  { return (short)Math.max(Short.MIN_VALUE,   Math.min(Short.MAX_VALUE,   longValue())); }
  public int    intValue()    { return (int)  Math.max(Integer.MIN_VALUE, Math.min(Integer.MAX_VALUE, longValue())); }
  public long   longValue()   { return Math.round(doubleValue()); }
  public float  floatValue()  { return (float)doubleValue(); }
  public double doubleValue() { return toBigDecimal(18).doubleValue(); }

  /**
   * Returns a BigDecimal representation of this fraction.  If possible, the
   * returned value will be exactly equal to the fraction.  If not, the BigDecimal
   * will have a scale large enough to hold the same number of significant figures
   * as both numerator and denominator, or the equivalent of a double-precision
   * number, whichever is more.
   */
  public BigDecimal toBigDecimal()
  {
    //Implementation note:  A fraction can be represented exactly in base-10 iff its
    //denominator is of the form 2^a * 5^b, where a and b are nonnegative integers.
    //(In other words, if there are no prime factors of the denominator except for
    //2 and 5, or if the denominator is 1).  So to determine if this denominator is
    //of this form, continually divide by 2 to get the number of 2's, and then
    //continually divide by 5 to get the number of 5's.  Afterward, if the denominator
    //is 1 then there are no other prime factors.

    //Note: number of 2's is given by the number of trailing 0 bits in the number
    int twos = denominator.getLowestSetBit();
    BigInteger tmpDen = denominator.shiftRight(twos); // x / 2^n === x >> n

    final BigInteger FIVE = BigInteger.valueOf(5);
    int fives = 0;
    BigInteger[] divMod = null;

    //while(tmpDen % 5 == 0) { fives++; tmpDen /= 5; }
    while(BigInteger.ZERO.equals((divMod = tmpDen.divideAndRemainder(FIVE))[1]))
    {
      fives++;
      tmpDen = divMod[0];
    }

    if(BigInteger.ONE.equals(tmpDen))
    {
      //This fraction will terminate in base 10, so it can be represented exactly as
      //a BigDecimal.  We would now like to make the fraction of the form
      //unscaled / 10^scale.  We know that 2^x * 5^x = 10^x, and our denominator is
      //in the form 2^twos * 5^fives.  So use max(twos, fives) as the scale, and
      //multiply the numerator and deminator by the appropriate number of 2's or 5's
      //such that the denominator is of the form 2^scale * 5^scale.  (Of course, we
      //only have to actually multiply the numerator, since all we need for the
      //BigDecimal constructor is the scale.
      BigInteger unscaled = numerator;
      int scale = Math.max(twos, fives);

      if(twos < fives)
        unscaled = unscaled.shiftLeft(fives - twos); //x * 2^n === x << n
      else if (fives < twos)
        unscaled = unscaled.multiply(FIVE.pow(twos - fives));

      return new BigDecimal(unscaled, scale);
    }

    //else: this number will repeat infinitely in base-10.  So try to figure out
    //a good number of significant digits.  Start with the number of digits required
    //to represent the numerator and denominator in base-10, which is given by
    //bitLength / log[2](10).  (bitLenth is the number of digits in base-2).
    final double LG10 = 3.321928094887362; //Precomputed ln(10)/ln(2), a.k.a. log[2](10)
    int precision = Math.max(numerator.bitLength(), denominator.bitLength());
    precision = (int)Math.ceil(precision / LG10);

    //If the precision is less than 18 digits, use 18 digits so that the number
    //will be at least as accurate as a cast to a double.  For example, with
    //the fraction 1/3, precision will be 1, giving a result of 0.3.  This is
    //quite a bit different from what a user would expect.
    if(precision < 18)
      precision = 18;

    return toBigDecimal(precision);
  }

  /**
   * Returns a BigDecimal representation of this fraction, with a given precision.
   * @param precision  the number of significant figures to be used in the result.
   */
  public BigDecimal toBigDecimal(int precision)
  {
    return new BigDecimal(numerator).divide(new BigDecimal(denominator), new MathContext(precision, RoundingMode.HALF_EVEN));
  }

  //--------------------------------------------------------------------------
  //  PRIVATE FUNCTIONS
  //--------------------------------------------------------------------------

  /**
   * Private constructor, used when you can be certain that the fraction is already in
   * lowest terms.  No check is done to reduce numerator/denominator.  A check is still
   * done to maintain a positive denominator.
   * 
   * @param throwaway  unused variable, only here to signal to the compiler that this
   *                   constructor should be used.
   */
  private BigFraction(BigInteger numerator, BigInteger denominator, boolean throwaway)
  {
    if(denominator.signum() < 0)
    {
      this.numerator = numerator.negate();
      this.denominator = denominator.negate();
    }
    else
    {
      this.numerator = numerator;
      this.denominator = denominator;
    }
  }

}

Altri suggerimenti

In effetti, prova questo per dimensioni. Funziona ma potrebbe avere alcuni problemi:

public class BigRational extends Number implements Comparable<BigRational>, Serializable {
    public final static BigRational ZERO = new BigRational(BigInteger.ZERO, BigInteger.ONE);
    private final static long serialVersionUID = 1099377265582986378L;

    private final BigInteger numerator, denominator;

    private BigRational(BigInteger numerator, BigInteger denominator) {
        this.numerator = numerator;
        this.denominator = denominator;
    }

    private static BigRational canonical(BigInteger numerator, BigInteger denominator, boolean checkGcd) {
        if (denominator.signum() == 0) {
            throw new IllegalArgumentException("denominator is zero");
        }
        if (numerator.signum() == 0) {
            return ZERO;
        }
        if (denominator.signum() < 0) {
            numerator = numerator.negate();
            denominator = denominator.negate();
        }
        if (checkGcd) {
            BigInteger gcd = numerator.gcd(denominator);
            if (!gcd.equals(BigInteger.ONE)) {
                numerator = numerator.divide(gcd);
                denominator = denominator.divide(gcd);
            }
        }
        return new BigRational(numerator, denominator);
    }

    public static BigRational getInstance(BigInteger numerator, BigInteger denominator) {
        return canonical(numerator, denominator, true);
    }

    public static BigRational getInstance(long numerator, long denominator) {
        return canonical(new BigInteger("" + numerator), new BigInteger("" + denominator), true);
    }

    public static BigRational getInstance(String numerator, String denominator) {
        return canonical(new BigInteger(numerator), new BigInteger(denominator), true);
    }

    public static BigRational valueOf(String s) {
        Pattern p = Pattern.compile("(-?\\d+)(?:.(\\d+)?)?0*(?:e(-?\\d+))?");
        Matcher m = p.matcher(s);
        if (!m.matches()) {
            throw new IllegalArgumentException("Unknown format '" + s + "'");
        }

        // this translates 23.123e5 to 25,123 / 1000 * 10^5 = 2,512,300 / 1 (GCD)
        String whole = m.group(1);
        String decimal = m.group(2);
        String exponent = m.group(3);
        String n = whole;

        // 23.123 => 23123
        if (decimal != null) {
            n += decimal;
        }
        BigInteger numerator = new BigInteger(n);

        // exponent is an int because BigInteger.pow() takes an int argument
        // it gets more difficult if exponent needs to be outside {-2 billion,2 billion}
        int exp = exponent == null ? 0 : Integer.valueOf(exponent);
        int decimalPlaces = decimal == null ? 0 : decimal.length();
        exp -= decimalPlaces;
        BigInteger denominator;
        if (exp < 0) {
            denominator = BigInteger.TEN.pow(-exp);
        } else {
            numerator = numerator.multiply(BigInteger.TEN.pow(exp));
            denominator = BigInteger.ONE;
        }

        // done
        return canonical(numerator, denominator, true);
    }

    // Comparable
    public int compareTo(BigRational o) {
        // note: this is a bit of cheat, relying on BigInteger.compareTo() returning
        // -1, 0 or 1.  For the more general contract of compareTo(), you'd need to do
        // more checking
        if (numerator.signum() != o.numerator.signum()) {
            return numerator.signum() - o.numerator.signum();
        } else {
            // oddly BigInteger has gcd() but no lcm()
            BigInteger i1 = numerator.multiply(o.denominator);
            BigInteger i2 = o.numerator.multiply(denominator);
            return i1.compareTo(i2); // expensive!
        }
    }

    public BigRational add(BigRational o) {
        if (o.numerator.signum() == 0) {
            return this;
        } else if (numerator.signum() == 0) {
            return o;
        } else if (denominator.equals(o.denominator)) {
            return new BigRational(numerator.add(o.numerator), denominator);
        } else {
            return canonical(numerator.multiply(o.denominator).add(o.numerator.multiply(denominator)), denominator.multiply(o.denominator), true);
        }
    }


    public BigRational multiply(BigRational o) {
        if (numerator.signum() == 0 || o.numerator.signum( )== 0) {
            return ZERO;
        } else if (numerator.equals(o.denominator)) {
            return canonical(o.numerator, denominator, true);
        } else if (o.numerator.equals(denominator)) {
            return canonical(numerator, o.denominator, true);
        } else if (numerator.negate().equals(o.denominator)) {
            return canonical(o.numerator.negate(), denominator, true);
        } else if (o.numerator.negate().equals(denominator)) {
            return canonical(numerator.negate(), o.denominator, true);
        } else {
            return canonical(numerator.multiply(o.numerator), denominator.multiply(o.denominator), true);
        }
    }

    public BigInteger getNumerator() { return numerator; }
    public BigInteger getDenominator() { return denominator; }
    public boolean isInteger() { return numerator.signum() == 0 || denominator.equals(BigInteger.ONE); }
    public BigRational negate() { return new BigRational(numerator.negate(), denominator); }
    public BigRational invert() { return canonical(denominator, numerator, false); }
    public BigRational abs() { return numerator.signum() < 0 ? negate() : this; }
    public BigRational pow(int exp) { return canonical(numerator.pow(exp), denominator.pow(exp), true); }
    public BigRational subtract(BigRational o) { return add(o.negate()); }
    public BigRational divide(BigRational o) { return multiply(o.invert()); }
    public BigRational min(BigRational o) { return compareTo(o) <= 0 ? this : o; }
    public BigRational max(BigRational o) { return compareTo(o) >= 0 ? this : o; }

    public BigDecimal toBigDecimal(int scale, RoundingMode roundingMode) {
        return isInteger() ? new BigDecimal(numerator) : new BigDecimal(numerator).divide(new BigDecimal(denominator), scale, roundingMode);
    }

    // Number
    public int intValue() { return isInteger() ? numerator.intValue() : numerator.divide(denominator).intValue(); }
    public long longValue() { return isInteger() ? numerator.longValue() : numerator.divide(denominator).longValue(); }
    public float floatValue() { return (float)doubleValue(); }
    public double doubleValue() { return isInteger() ? numerator.doubleValue() : numerator.doubleValue() / denominator.doubleValue(); }

    @Override
    public String toString() { return isInteger() ? String.format("%,d", numerator) : String.format("%,d / %,d", numerator, denominator); }

    @Override
    public boolean equals(Object o) {
        if (this == o) return true;
        if (o == null || getClass() != o.getClass()) return false;

        BigRational that = (BigRational) o;

        if (denominator != null ? !denominator.equals(that.denominator) : that.denominator != null) return false;
        if (numerator != null ? !numerator.equals(that.numerator) : that.numerator != null) return false;

        return true;
    }

    @Override
    public int hashCode() {
        int result = numerator != null ? numerator.hashCode() : 0;
        result = 31 * result + (denominator != null ? denominator.hashCode() : 0);
        return result;
    }

    public static void main(String args[]) {
        BigRational r1 = BigRational.valueOf("3.14e4");
        BigRational r2 = BigRational.getInstance(111, 7);
        dump("r1", r1);
        dump("r2", r2);
        dump("r1 + r2", r1.add(r2));
        dump("r1 - r2", r1.subtract(r2));
        dump("r1 * r2", r1.multiply(r2));
        dump("r1 / r2", r1.divide(r2));
        dump("r2 ^ 2", r2.pow(2));
    }

    public static void dump(String name, BigRational r) {
        System.out.printf("%s = %s%n", name, r);
        System.out.printf("%s.negate() = %s%n", name, r.negate());
        System.out.printf("%s.invert() = %s%n", name, r.invert());
        System.out.printf("%s.intValue() = %,d%n", name, r.intValue());
        System.out.printf("%s.longValue() = %,d%n", name, r.longValue());
        System.out.printf("%s.floatValue() = %,f%n", name, r.floatValue());
        System.out.printf("%s.doubleValue() = %,f%n", name, r.doubleValue());
        System.out.println();
    }
}

L'output è:

r1 = 31,400
r1.negate() = -31,400
r1.invert() = 1 / 31,400
r1.intValue() = 31,400
r1.longValue() = 31,400
r1.floatValue() = 31,400.000000
r1.doubleValue() = 31,400.000000

r2 = 111 / 7
r2.negate() = -111 / 7
r2.invert() = 7 / 111
r2.intValue() = 15
r2.longValue() = 15
r2.floatValue() = 15.857142
r2.doubleValue() = 15.857143

r1 + r2 = 219,911 / 7
r1 + r2.negate() = -219,911 / 7
r1 + r2.invert() = 7 / 219,911
r1 + r2.intValue() = 31,415
r1 + r2.longValue() = 31,415
r1 + r2.floatValue() = 31,415.857422
r1 + r2.doubleValue() = 31,415.857143

r1 - r2 = 219,689 / 7
r1 - r2.negate() = -219,689 / 7
r1 - r2.invert() = 7 / 219,689
r1 - r2.intValue() = 31,384
r1 - r2.longValue() = 31,384
r1 - r2.floatValue() = 31,384.142578
r1 - r2.doubleValue() = 31,384.142857

r1 * r2 = 3,485,400 / 7
r1 * r2.negate() = -3,485,400 / 7
r1 * r2.invert() = 7 / 3,485,400
r1 * r2.intValue() = 497,914
r1 * r2.longValue() = 497,914
r1 * r2.floatValue() = 497,914.281250
r1 * r2.doubleValue() = 497,914.285714

r1 / r2 = 219,800 / 111
r1 / r2.negate() = -219,800 / 111
r1 / r2.invert() = 111 / 219,800
r1 / r2.intValue() = 1,980
r1 / r2.longValue() = 1,980
r1 / r2.floatValue() = 1,980.180176
r1 / r2.doubleValue() = 1,980.180180

r2 ^ 2 = 12,321 / 49
r2 ^ 2.negate() = -12,321 / 49
r2 ^ 2.invert() = 49 / 12,321
r2 ^ 2.intValue() = 251
r2 ^ 2.longValue() = 251
r2 ^ 2.floatValue() = 251.448975
r2 ^ 2.doubleValue() = 251.448980
  

Sto cercando di lavorare con le frazioni appropriate in Java.

Apache Commons Math ha avuto un Frazione per un bel po 'di tempo. Il più delle volte la risposta a, "Ragazzo, vorrei che Java avesse qualcosa come X nella libreria principale! & Quot; può essere trovato sotto l'ombrello della libreria Apache Commons .

Per favore, rendilo un tipo immutabile! Il valore di una frazione non cambia, ad esempio la metà non diventa una terza. Invece di setDenominator, potresti avere conDenominator che restituisce una nuova frazione che ha lo stesso numeratore ma il denominatore specificato.

La vita è molto più facile con tipi immutabili.

Anche l'override di uguali e hashcode sarebbe sensato, quindi può essere utilizzato in mappe e set. Anche i punti del programmatore fuorilegge sugli operatori aritmetici e la formattazione delle stringhe sono buoni.

Come guida generale, dai un'occhiata a BigInteger e BigDecimal. Non stanno facendo la stessa cosa, ma sono abbastanza simili per darti buone idee.

Beh, per esempio, mi sbarazzerei dei setter e renderei immutabili le frazioni.

Probabilmente vorrai anche metodi da aggiungere, sottrarre, ecc. e forse un modo per ottenere la rappresentazione in vari formati String.

EDIT: probabilmente contrassegnerei i campi come 'finali' per segnalare il mio intento ma immagino che non sia un grosso problema ...

  • È un po 'inutile senza metodi aritmetici come add () e multiply (), ecc.
  • Dovresti assolutamente sovrascrivere equals () e hashCode ().
  • Devi aggiungere un metodo per normalizzare la frazione o farlo automaticamente. Pensa se vuoi che 1/2 e 2/4 siano considerati uguali o meno - questo ha implicazioni per i metodi equals (), hashCode () e compareTo ().
  

Dovrò ordinarli dal più piccolo al più grande,   quindi alla fine dovrò rappresentarli anche come doppio

Non strettamente necessario. (In effetti, se si desidera gestire correttamente l'uguaglianza, non fare affidamento sul doppio per funzionare correttamente.) Se b * d è positivo, a / b < c / d se ad < avanti Cristo. Se sono coinvolti numeri negativi, questo può essere gestito in modo appropriato ...

Potrei riscrivere come:

public int compareTo(Fraction frac)
{
    // we are comparing this=a/b with frac=c/d 
    // by multiplying both sides by bd.
    // If bd is positive, then a/b < c/d <=> ad < bc.
    // If bd is negative, then a/b < c/d <=> ad > bc.
    // If bd is 0, then you've got other problems (either b=0 or d=0)
    int d = frac.getDenominator();
    long ad = (long)this.numerator * d;
    long bc = (long)this.denominator * frac.getNumerator();
    long diff = ((long)d*this.denominator > 0) ? (ad-bc) : (bc-ad);
    return (diff > 0 ? 1 : (diff < 0 ? -1 : 0));
}

L'uso di long qui è per garantire che non ci sia un overflow se moltiplichi due grandi int . handle Se puoi garantire che il denominatore sia sempre non negativo (se è negativo, annulla sia il numeratore che il denominatore), allora puoi sbarazzarti di dover controllare se b * d è positivo e salvare alcuni passaggi. Non sono sicuro del comportamento che stai cercando con zero denominatore.

Non sono sicuro di come le prestazioni si confrontino con l'uso dei doppi per confrontare. (vale a dire, se ti preoccupi così tanto delle prestazioni) Ecco un metodo di prova che ho usato per verificare. (Sembra funzionare correttamente.)

public static void main(String[] args)
{
    int a = Integer.parseInt(args[0]);
    int b = Integer.parseInt(args[1]);
    int c = Integer.parseInt(args[2]);
    int d = Integer.parseInt(args[3]);
    Fraction f1 = new Fraction(a,b); 
    Fraction f2 = new Fraction(c,d);
    int rel = f1.compareTo(f2);
    String relstr = "<=>";
    System.out.println(a+"/"+b+" "+relstr.charAt(rel+1)+" "+c+"/"+d);
}

(p.s. potresti prendere in considerazione la ristrutturazione per implementare Comparable o Comparator per la tua classe.)

Un miglioramento molto piccolo potrebbe essere potenzialmente quello di salvare il doppio valore che stai calcolando in modo da calcolarlo solo al primo accesso. Questa non sarà una grande vittoria a meno che tu non acceda molto a questo numero, ma non è neanche troppo difficile da fare.

Un altro punto potrebbe essere l'errore che si verifica nel denominatore ... si cambia automaticamente da 0 a 1. Non si è sicuri che ciò sia corretto per la propria specifica applicazione, ma in generale se qualcuno sta cercando di dividere per 0, qualcosa è molto sbagliato. Lascerei che ciò generi un'eccezione (un'eccezione specializzata se ritieni che sia necessaria) anziché modificare il valore in un modo apparentemente arbitrario che non è noto all'utente.

In contrasto con alcuni altri commenti, sull'aggiunta di metodi per aggiungere sottrazione, ecc ... dal momento che non hai menzionato il bisogno di loro, presumo che non lo faccia. E a meno che tu non stia costruendo una biblioteca che sarà davvero utilizzata in molti luoghi o da altre persone, vai con YAGNI (non ne avrai bisogno, quindi non dovrebbe essere lì.)

Esistono diversi modi per migliorare questo o qualsiasi tipo di valore:

  • Rendi la tua classe immutabile , incluso il completamento del numeratore e del denominatore
  • converte automaticamente le frazioni in una forma canonica , ad es. 2/4 - > 1/2
  • Implementa toString ()
  • Implementa "quotazione pubblica statica della frazione di Of (String s)" per convertire da stringhe a frazioni. Implementa metodi di fabbrica simili per la conversione da int, double, ecc.
  • Implementa aggiunta, moltiplicazione, ecc.
  • Aggiungi costruttore da numeri interi
  • Sostituisci equals / hashCode
  • Prendi in considerazione l'idea di rendere Fraction un'interfaccia con un'implementazione che passi a BigInteger come necessario
  • Prendi in considerazione la sottoclasse Number
  • Valuta di includere le costanti nominate per valori comuni come 0 e 1
  • Prendi in considerazione la possibilità di renderlo serializzabile
  • Test per divisione per zero
  • Documenta la tua API

Fondamentalmente, dai un'occhiata all'API per altre classi di valore come Double , Integer e fai quello che fanno :)

Se moltiplichi il numeratore e il denominatore di una frazione con il denominatore dell'altra e viceversa, finisci con due frazioni (che sono ancora gli stessi valori) con lo stesso denominatore e puoi confrontare direttamente i numeratori. Pertanto non è necessario calcolare il doppio valore:

public int compareTo(Fraction frac) {
    int t = this.numerator * frac.getDenominator();
    int f = frac.getNumerator() * this.denominator;
    if(t>f) return 1;
    if(f>t) return -1;
    return 0;
}

come migliorerei quel codice:

  1. un costruttore basato su String Fraction (String s) // explore " number / number "
  2. una frazione del costruttore di copie (copia della frazione)
  3. sovrascrive il metodo clone
  4. implementa i metodi equals, toString e hashcode
  5. implementa l'interfaccia java.io.Serializable, Comparable
  6. un metodo " double getDoubleValue () "
  7. un metodo add / divide / etc ...
  8. Vorrei rendere quella classe immutabile (senza setter)

Hai già una funzione compareTo ... Vorrei implementare l'interfaccia Comparable.

Potrebbe non importare davvero per quello che hai intenzione di fare.

Se ti senti avventuroso, dai un'occhiata a JScience . Ha una Rational che rappresenta le frazioni.

  

In particolare : esiste un modo migliore per gestire il passaggio a un denominatore zero? L'impostazione del denominatore su 1 risulta possibilmente arbitraria. Come posso farlo bene?

Direi lanciare un'eccezione aritmetica per dividere per zero, poiché è proprio quello che sta succedendo:

public Fraction(int numerator, int denominator) {
    if(denominator == 0)
        throw new ArithmeticException("Divide by zero.");
    this.numerator = numerator;
    this.denominator = denominator;
}

Invece di " Dividi per zero. " ;, potresti voler dire il messaggio " Dividi per zero: il denominatore per frazione è zero. "

Dopo aver creato un oggetto frazione, perché dovresti consentire ad altri oggetti di impostare il numeratore o il denominatore? Penso che questi dovrebbero essere di sola lettura. Rende l'oggetto immutabile ...

Inoltre ... l'impostazione del denominatore su zero dovrebbe generare un'eccezione argomento non valida (non so cosa sia in Java)

Timothy Budd ha una buona implementazione di una classe Rational nelle sue "Strutture dati in C ++". Linguaggio diverso, ovviamente, ma porta molto bene su Java.

Consiglierei più costruttori. Un costruttore predefinito avrebbe numeratore 0, denominatore 1. Un singolo costruttore arg assumerebbe un denominatore di 1. Pensa a come i tuoi utenti potrebbero usare questa classe.

Nessun controllo per denominatore zero? La programmazione per contratto vorrebbe aggiungerla.

Terzo o quinto o qualunque sia la raccomandazione per rendere immutabile la tua frazione. Ti consiglio anche di estendere il Numero classe. Probabilmente darei un'occhiata al Double classe, poiché probabilmente vorrai implementare molti degli stessi metodi.

Probabilmente dovresti anche implementare Comparable e Serializable poiché probabilmente questo comportamento essere atteso. Pertanto, dovrai implementare compareTo (). Dovrai anche sovrascrivere equals () e non posso sottolineare abbastanza forte da sovrascrivere anche hashCode (). Questo potrebbe essere uno dei pochi casi in cui non si desidera che compareTo () ed equals () siano coerenti poiché le frazioni riducibili tra loro non sono necessariamente uguali.

Una pratica di pulizia che mi piace è avere un solo ritorno.

 public int compareTo(Fraction frac) {
        int result = 0
        double t = this.doubleValue();
        double f = frac.doubleValue();
        if(t>f) 
           result = 1;
        else if(f>t) 
           result -1;
        return result;
    }

Utilizza la classe Rational dalla libreria JScience . È la cosa migliore per l'aritmetica frazionaria che ho visto in Java.

Ho ripulito la risposta di cletus :

  • Aggiunto Javadoc per tutti i metodi.
  • Aggiunti controlli per i presupposti del metodo.
  • Sostituito l'analisi personalizzata in valueOf (String) con BigInteger (String) che è sia più flessibile che più veloce.
import com.google.common.base.Splitter;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.RoundingMode;
import java.util.List;
import java.util.Objects;
import org.bitbucket.cowwoc.preconditions.Preconditions;

/**
 * A rational fraction, represented by {@code numerator / denominator}.
 * <p>
 * This implementation is based on <a
 * href="https://stackoverflow.com/a/474577/14731">https://stackoverflow.com/a/474577/14731</a>
 * <p>
 * @author Gili Tzabari
 */
public final class BigRational extends Number implements Comparable<BigRational>
{
    private static final long serialVersionUID = 0L;
    public static final BigRational ZERO = new BigRational(BigInteger.ZERO, BigInteger.ONE);
    public static final BigRational ONE = new BigRational(BigInteger.ONE, BigInteger.ONE);

    /**
     * Ensures the fraction the denominator is positive and optionally divides the numerator and
     * denominator by the greatest common factor.
     * <p>
     * @param numerator   a numerator
     * @param denominator a denominator
     * @param checkGcd    true if the numerator and denominator should be divided by the greatest
     *                    common factor
     * @return the canonical representation of the rational fraction
     */
    private static BigRational canonical(BigInteger numerator, BigInteger denominator,
        boolean checkGcd)
    {
        assert (numerator != null);
        assert (denominator != null);
        if (denominator.signum() == 0)
            throw new IllegalArgumentException("denominator is zero");
        if (numerator.signum() == 0)
            return ZERO;
        BigInteger newNumerator = numerator;
        BigInteger newDenominator = denominator;
        if (newDenominator.signum() < 0)
        {
            newNumerator = newNumerator.negate();
            newDenominator = newDenominator.negate();
        }
        if (checkGcd)
        {
            BigInteger gcd = newNumerator.gcd(newDenominator);
            if (!gcd.equals(BigInteger.ONE))
            {
                newNumerator = newNumerator.divide(gcd);
                newDenominator = newDenominator.divide(gcd);
            }
        }
        return new BigRational(newNumerator, newDenominator);
    }

    /**
     * @param numerator   a numerator
     * @param denominator a denominator
     * @return a BigRational having value {@code numerator / denominator}
     * @throws NullPointerException if numerator or denominator are null
     */
    public static BigRational valueOf(BigInteger numerator, BigInteger denominator)
    {
        Preconditions.requireThat(numerator, "numerator").isNotNull();
        Preconditions.requireThat(denominator, "denominator").isNotNull();
        return canonical(numerator, denominator, true);
    }

    /**
     * @param numerator   a numerator
     * @param denominator a denominator
     * @return a BigRational having value {@code numerator / denominator}
     */
    public static BigRational valueOf(long numerator, long denominator)
    {
        BigInteger bigNumerator = BigInteger.valueOf(numerator);
        BigInteger bigDenominator = BigInteger.valueOf(denominator);
        return canonical(bigNumerator, bigDenominator, true);
    }

    /**
     * @param value the parameter value
     * @param name  the parameter name
     * @return the BigInteger representation of the parameter
     * @throws NumberFormatException if value is not a valid representation of BigInteger
     */
    private static BigInteger requireBigInteger(String value, String name)
        throws NumberFormatException
    {
        try
        {
            return new BigInteger(value);
        }
        catch (NumberFormatException e)
        {
            throw (NumberFormatException) new NumberFormatException("Invalid " + name + ": " + value).
                initCause(e);
        }
    }

    /**
     * @param numerator   a numerator
     * @param denominator a denominator
     * @return a BigRational having value {@code numerator / denominator}
     * @throws NullPointerException     if numerator or denominator are null
     * @throws IllegalArgumentException if numerator or denominator are empty
     * @throws NumberFormatException    if numerator or denominator are not a valid representation of
     *                                  BigDecimal
     */
    public static BigRational valueOf(String numerator, String denominator)
        throws NullPointerException, IllegalArgumentException, NumberFormatException
    {
        Preconditions.requireThat(numerator, "numerator").isNotNull().isNotEmpty();
        Preconditions.requireThat(denominator, "denominator").isNotNull().isNotEmpty();
        BigInteger bigNumerator = requireBigInteger(numerator, "numerator");
        BigInteger bigDenominator = requireBigInteger(denominator, "denominator");
        return canonical(bigNumerator, bigDenominator, true);
    }

    /**
     * @param value a string representation of a rational fraction (e.g. "12.34e5" or "3/4")
     * @return a BigRational representation of the String
     * @throws NullPointerException     if value is null
     * @throws IllegalArgumentException if value is empty
     * @throws NumberFormatException    if numerator or denominator are not a valid representation of
     *                                  BigDecimal
     */
    public static BigRational valueOf(String value)
        throws NullPointerException, IllegalArgumentException, NumberFormatException
    {
        Preconditions.requireThat(value, "value").isNotNull().isNotEmpty();
        List<String> fractionParts = Splitter.on('/').splitToList(value);
        if (fractionParts.size() == 1)
            return valueOfRational(value);
        if (fractionParts.size() == 2)
            return BigRational.valueOf(fractionParts.get(0), fractionParts.get(1));
        throw new IllegalArgumentException("Too many slashes: " + value);
    }

    /**
     * @param value a string representation of a rational fraction (e.g. "12.34e5")
     * @return a BigRational representation of the String
     * @throws NullPointerException     if value is null
     * @throws IllegalArgumentException if value is empty
     * @throws NumberFormatException    if numerator or denominator are not a valid representation of
     *                                  BigDecimal
     */
    private static BigRational valueOfRational(String value)
        throws NullPointerException, IllegalArgumentException, NumberFormatException
    {
        Preconditions.requireThat(value, "value").isNotNull().isNotEmpty();
        BigDecimal bigDecimal = new BigDecimal(value);
        int scale = bigDecimal.scale();
        BigInteger numerator = bigDecimal.unscaledValue();
        BigInteger denominator;
        if (scale > 0)
            denominator = BigInteger.TEN.pow(scale);
        else
        {
            numerator = numerator.multiply(BigInteger.TEN.pow(-scale));
            denominator = BigInteger.ONE;
        }

        return canonical(numerator, denominator, true);
    }

    private final BigInteger numerator;
    private final BigInteger denominator;

    /**
     * @param numerator   the numerator
     * @param denominator the denominator
     * @throws NullPointerException if numerator or denominator are null
     */
    private BigRational(BigInteger numerator, BigInteger denominator)
    {
        Preconditions.requireThat(numerator, "numerator").isNotNull();
        Preconditions.requireThat(denominator, "denominator").isNotNull();
        this.numerator = numerator;
        this.denominator = denominator;
    }

    /**
     * @return the numerator
     */
    public BigInteger getNumerator()
    {
        return numerator;
    }

    /**
     * @return the denominator
     */
    public BigInteger getDenominator()
    {
        return denominator;
    }

    @Override
    @SuppressWarnings("AccessingNonPublicFieldOfAnotherObject")
    public int compareTo(BigRational other)
    {
        Preconditions.requireThat(other, "other").isNotNull();

        // canonical() ensures denominator is positive
        if (numerator.signum() != other.numerator.signum())
            return numerator.signum() - other.numerator.signum();

        // Set the denominator to a common multiple before comparing the numerators
        BigInteger first = numerator.multiply(other.denominator);
        BigInteger second = other.numerator.multiply(denominator);
        return first.compareTo(second);
    }

    /**
     * @param other another rational fraction
     * @return the result of adding this object to {@code other}
     * @throws NullPointerException if other is null
     */
    @SuppressWarnings("AccessingNonPublicFieldOfAnotherObject")
    public BigRational add(BigRational other)
    {
        Preconditions.requireThat(other, "other").isNotNull();
        if (other.numerator.signum() == 0)
            return this;
        if (numerator.signum() == 0)
            return other;
        if (denominator.equals(other.denominator))
            return new BigRational(numerator.add(other.numerator), denominator);
        return canonical(numerator.multiply(other.denominator).
            add(other.numerator.multiply(denominator)),
            denominator.multiply(other.denominator), true);
    }

    /**
     * @param other another rational fraction
     * @return the result of subtracting {@code other} from this object
     * @throws NullPointerException if other is null
     */
    @SuppressWarnings("AccessingNonPublicFieldOfAnotherObject")
    public BigRational subtract(BigRational other)
    {
        return add(other.negate());
    }

    /**
     * @param other another rational fraction
     * @return the result of multiplying this object by {@code other}
     * @throws NullPointerException if other is null
     */
    @SuppressWarnings("AccessingNonPublicFieldOfAnotherObject")
    public BigRational multiply(BigRational other)
    {
        Preconditions.requireThat(other, "other").isNotNull();
        if (numerator.signum() == 0 || other.numerator.signum() == 0)
            return ZERO;
        if (numerator.equals(other.denominator))
            return canonical(other.numerator, denominator, true);
        if (other.numerator.equals(denominator))
            return canonical(numerator, other.denominator, true);
        if (numerator.negate().equals(other.denominator))
            return canonical(other.numerator.negate(), denominator, true);
        if (other.numerator.negate().equals(denominator))
            return canonical(numerator.negate(), other.denominator, true);
        return canonical(numerator.multiply(other.numerator), denominator.multiply(other.denominator),
            true);
    }

    /**
     * @param other another rational fraction
     * @return the result of dividing this object by {@code other}
     * @throws NullPointerException if other is null
     */
    public BigRational divide(BigRational other)
    {
        return multiply(other.invert());
    }

    /**
     * @return true if the object is a whole number
     */
    public boolean isInteger()
    {
        return numerator.signum() == 0 || denominator.equals(BigInteger.ONE);
    }

    /**
     * Returns a BigRational whose value is (-this).
     * <p>
     * @return -this
     */
    public BigRational negate()
    {
        return new BigRational(numerator.negate(), denominator);
    }

    /**
     * @return a rational fraction with the numerator and denominator swapped
     */
    public BigRational invert()
    {
        return canonical(denominator, numerator, false);
    }

    /**
     * @return the absolute value of this {@code BigRational}
     */
    public BigRational abs()
    {
        if (numerator.signum() < 0)
            return negate();
        return this;
    }

    /**
     * @param exponent exponent to which both numerator and denominator is to be raised.
     * @return a BigRational whose value is (this<sup>exponent</sup>).
     */
    public BigRational pow(int exponent)
    {
        return canonical(numerator.pow(exponent), denominator.pow(exponent), true);
    }

    /**
     * @param other another rational fraction
     * @return the minimum of this object and the other fraction
     */
    public BigRational min(BigRational other)
    {
        if (compareTo(other) <= 0)
            return this;
        return other;
    }

    /**
     * @param other another rational fraction
     * @return the maximum of this object and the other fraction
     */
    public BigRational max(BigRational other)
    {
        if (compareTo(other) >= 0)
            return this;
        return other;
    }

    /**
     * @param scale        scale of the BigDecimal quotient to be returned
     * @param roundingMode the rounding mode to apply
     * @return a BigDecimal representation of this object
     * @throws NullPointerException if roundingMode is null
     */
    public BigDecimal toBigDecimal(int scale, RoundingMode roundingMode)
    {
        Preconditions.requireThat(roundingMode, "roundingMode").isNotNull();
        if (isInteger())
            return new BigDecimal(numerator);
        return new BigDecimal(numerator).divide(new BigDecimal(denominator), scale, roundingMode);
    }

    @Override
    public int intValue()
    {
        return (int) longValue();
    }

    @Override
    public long longValue()
    {
        if (isInteger())
            return numerator.longValue();
        return numerator.divide(denominator).longValue();
    }

    @Override
    public float floatValue()
    {
        return (float) doubleValue();
    }

    @Override
    public double doubleValue()
    {
        if (isInteger())
            return numerator.doubleValue();
        return numerator.doubleValue() / denominator.doubleValue();
    }

    @Override
    @SuppressWarnings("AccessingNonPublicFieldOfAnotherObject")
    public boolean equals(Object o)
    {
        if (this == o)
            return true;
        if (!(o instanceof BigRational))
            return false;
        BigRational other = (BigRational) o;

        return numerator.equals(other.denominator) && Objects.equals(denominator, other.denominator);
    }

    @Override
    public int hashCode()
    {
        return Objects.hash(numerator, denominator);
    }

    /**
     * Returns the String representation: {@code numerator / denominator}.
     */
    @Override
    public String toString()
    {
        if (isInteger())
            return String.format("%,d", numerator);
        return String.format("%,d / %,d", numerator, denominator);
    }
}

Osservazione iniziale:

Non scrivere mai questo:

if ( condition ) statement;

Questo è molto meglio

if ( condition ) { statement };

Basta creare per creare una buona abitudine.

Rendendo immutabile la classe come suggerito, puoi anche sfruttare il doppio per eseguire equals e hashCode e confrontare le operazioni

Ecco la mia versione sporca rapida:

public final class Fraction implements Comparable {

    private final int numerator;
    private final int denominator;
    private final Double internal;

    public static Fraction createFraction( int numerator, int denominator ) { 
        return new Fraction( numerator, denominator );
    }

    private Fraction(int numerator, int denominator) {
        this.numerator   = numerator;
        this.denominator = denominator;
        this.internal = ((double) numerator)/((double) denominator);
    }


    public int getNumerator() {
        return this.numerator;
    }

    public int getDenominator() {
        return this.denominator;
    }


    private double doubleValue() {
        return internal;
    }

    public int compareTo( Object o ) {
        if ( o instanceof Fraction ) { 
            return internal.compareTo( ((Fraction)o).internal );
        }
        return 1;
    }

    public boolean equals( Object o ) {
          if ( o instanceof Fraction ) {  
             return this.internal.equals( ((Fraction)o).internal );
          } 
          return false;
    }

    public int hashCode() { 
        return internal.hashCode();
    }



    public String toString() { 
        return String.format("%d/%d", numerator, denominator );
    }

    public static void main( String [] args ) { 
        System.out.println( Fraction.createFraction( 1 , 2 ) ) ;
        System.out.println( Fraction.createFraction( 1 , 2 ).hashCode() ) ;
        System.out.println( Fraction.createFraction( 1 , 2 ).compareTo( Fraction.createFraction(2,4) ) ) ;
        System.out.println( Fraction.createFraction( 1 , 2 ).equals( Fraction.createFraction(4,8) ) ) ;
        System.out.println( Fraction.createFraction( 3 , 9 ).equals( Fraction.createFraction(1,3) ) ) ;
    }       

}

Informazioni sul metodo statico di fabbrica, può essere utile in seguito, se si esegue la sottoclasse della Frazione per gestire cose più complesse o se si decide di utilizzare un pool per gli oggetti utilizzati più frequentemente.

Potrebbe non essere il caso, volevo solo sottolinearlo. :)

Vedi Java efficace primo elemento.

Potrebbe essere utile aggiungere cose semplici come reciprocare, ottenere il resto e integrarsi.

Anche se hai i metodi compareTo (), se vuoi usare utility come Collections.sort (), allora dovresti anche implementare Comparable.

public class Fraction extends Number implements Comparable<Fraction> {
 ...
}

Inoltre, per un display carino, consiglio di sostituire ToString ()

public String toString() {
    return this.getNumerator() + "/" + this.getDenominator();
}

E infine, renderei pubblica la classe in modo che tu possa usarla da diversi pacchetti.

Questa funzione semplifica l'uso dell'algoritmo euclideo è molto utile quando si definiscono le frazioni

 public Fraction simplify(){


     int safe;
     int h= Math.max(numerator, denominator);
     int h2 = Math.min(denominator, numerator);

     if (h == 0){

         return new Fraction(1,1);
     }

     while (h>h2 && h2>0){

          h = h - h2;
          if (h>h2){

              safe = h;
              h = h2;
              h2 = safe;

          }  

     }

  return new Fraction(numerator/h,denominator/h);

 }

Per l'implementazione frazionaria / razionale di livello industriale, la implementerei in modo che possa rappresentare NaN, infinito positivo, infinito negativo e zero facoltativamente negativo con semantica operativa esattamente uguale agli stati standard IEEE 754 per l'aritmetica in virgola mobile (esso facilita anche la conversione in / da valori in virgola mobile). Inoltre, poiché il confronto con zero, uno e i valori speciali sopra richiedono solo un confronto semplice, ma combinato del numeratore e del denominatore rispetto a 0 e 1, aggiungerei diversi metodi isXXX e confrontero ToXXX per facilità d'uso (ad es. Eq0 () sarebbe usa numeratore == 0 & amp; & amp; denominator! = 0 dietro le quinte invece di consentire al cliente di confrontare un'istanza con valore zero). Anche alcuni valori staticamente predefiniti (ZERO, ONE, TWO, TEN, ONE_TENTH, NAN, ecc.) Sono utili, poiché appaiono in diversi punti come valori costanti. Questo è il modo migliore IMHO.

Frazione di classe:

     public class Fraction {
        private int num;            // numerator 
        private int denom;          // denominator 
        // default constructor
        public Fraction() {}
        // constructor
        public Fraction( int a, int b ) {
            num = a;
            if ( b == 0 )
                throw new ZeroDenomException();
            else
                denom = b;
        }
        // return string representation of ComplexNumber
        @Override
        public String toString() {
            return "( " + num + " / " + denom + " )";
        }
        // the addition operation
        public Fraction add(Fraction x){
            return new Fraction(
                    x.num * denom + x.denom * num, x.denom * denom );
        }
        // the multiplication operation
        public Fraction multiply(Fraction x) {
            return new Fraction(x.num * num, x.denom * denom);
        } 
}

Il programma principale:

    static void main(String[] args){
    Scanner input = new Scanner(System.in);
    System.out.println("Enter numerator and denominator of first fraction");
    int num1 =input.nextInt();
    int denom1 =input.nextInt();
    Fraction x = new Fraction(num1, denom1);
    System.out.println("Enter numerator and denominator of second fraction");
    int num2 =input.nextInt();
    int denom2 =input.nextInt();
    Fraction y = new Fraction(num2, denom2);
    Fraction result = new Fraction();
    System.out.println("Enter required operation: A (Add), M (Multiply)");
    char op = input.next().charAt(0);
    if(op == 'A') {
        result = x.add(y);
        System.out.println(x + " + " + y + " = " + result);
    }
Autorizzato sotto: CC-BY-SA insieme a attribuzione
Non affiliato a StackOverflow
scroll top