Domanda

è definito il seguente sequenza iterativa per l'insieme degli interi positivi:

n -> n / 2 (n è pari) n -> 3n + 1 (n è dispari)

Utilizzando la regola di cui sopra e partendo da 13, si genera la seguente sequenza:

13 40 20 10 5 16 8 4 2 1 Si può notare che questa sequenza (a partire da 13 e terminando a 1) contiene 10 termini. Anche se non è stato ancora dimostrato (Collatz problema), si ritiene che tutti i numeri che iniziano terminano alle 1.

Quale numero di partenza, sotto un milione, produce la catena più lunga?

. NOTA: Una volta che la catena avvia i termini sono autorizzati ad andare al di sopra di un milione

Ho cercato di codifica una soluzione a questo in C utilizzando il metodo bruteforce. Tuttavia, sembra che il mio programma si arresta quando si cerca di calcolare 113383. Si prega di consiglio:)

#include <stdio.h>
#define LIMIT 1000000

int iteration(int value)
{
 if(value%2==0)
  return (value/2);
 else
  return (3*value+1);
}

int count_iterations(int value)
{
 int count=1;
 //printf("%d\n", value);
 while(value!=1)
 {
  value=iteration(value);
  //printf("%d\n", value);
  count++;
 }
 return count;
}

int main()
{
 int iteration_count=0, max=0;
 int i,count;


 for (i=1; i<LIMIT; i++)
 {
  printf("Current iteration : %d\n", i);
  iteration_count=count_iterations(i);
  if (iteration_count>max)
   {
   max=iteration_count;
   count=i;
   }

 }

 //iteration_count=count_iterations(113383); 
 printf("Count = %d\ni = %d\n",max,count);

}
È stato utile?

Soluzione

Il motivo per cui stai stallo è perché si passa attraverso un numero maggiore di 2^31-1 (aka INT_MAX); provare a utilizzare unsigned long long invece di int.

bloggato su questo ; Si noti che in C il metodo iterativo ingenuo è più che abbastanza veloce. Per i linguaggi dinamici, potrebbe essere necessario ottimizzare per memoizing al fine di obbedire al regola uno minuti (ma questo non è il caso qui).


ha fatto di nuovo (questo tempo esaminando ulteriori ottimizzazioni possibile utilizzando C ++).

Altri suggerimenti

Si noti che la soluzione di forza bruta spesso calcola gli stessi sottoproblemi più e più volte. Ad esempio, se si inizia con 10, si ottiene 5 16 8 4 2 1; ma se si inizia con 20, si ottiene 20 10 5 16 8 4 2 1. Se in cache il valore a 10 una volta che è calcolato, e quindi non dovrà calcolare tutto da capo.

(Questo è noto come programmazione dinamica .)

ho risolto il problema qualche tempo fa e hanno per fortuna ancora il mio codice. Non leggere il codice, se non si vuole uno spoiler :

#include <stdio.h>

int lookup[1000000] = { 0 };

unsigned int NextNumber(unsigned int value) {
  if ((value % 2) == 0) value >>= 1;
  else value = (value * 3) + 1;
  return value;
}

int main() {
  int i = 0;
  int chainlength = 0;
  int longest = 0;
  int longestchain = 0;
  unsigned int value = 0;
  for (i = 1; i < 1000000; ++i) {
    chainlength = 0;
    value = i;
    while (value != 1) {
      ++chainlength;
      value = NextNumber(value);
      if (value >= 1000000) continue;
      if (lookup[value] != 0) {
        chainlength += lookup[value];
        break;
      }
    }

    lookup[i] = chainlength;

    if (longestchain < chainlength) {
      longest = i;
      longestchain = chainlength;
    }
  }
  printf("\n%d: %d\n", longest, longestchain);
}

time ./a.out

[don't be lazy, run it yourself]: [same here]

real    0m0.106s
user    0m0.094s
sys     0m0.012s

Dopo aver appena testato in C #, sembra che 113383 è il primo valore in cui il tipo int a 32 bit diventa troppo piccolo per memorizzare ogni fase della catena.

Prova ad utilizzare un unsigned long durante la manipolazione di questi grandi numeri;)

Come è stato detto, il modo più semplice è quello di ottenere un po 'Memoizzazione per evitare ricalcolare le cose che non sono state calcolate. Potreste essere interessati a sapere che non c'è ciclo se voi di essere da un numero sotto di un milione (nessun ciclo è stato ancora scoperto, e la gente ha esplorato i numeri molto più grandi).

Per tradurre in codice, si può pensare il modo in python:

MEMOIZER = dict()

def memo(x, func):
  global MEMOIZER
  if x in MEMOIZER: return MEMOIZER[x]

  r = func(x)

  MEMOIZER[x] = r

  return r

Memoizzazione è uno schema molto generico.

Per la congettura Collatze, si potrebbe incorrere in un po 'di un pizzico perché i numeri possono davvero crescere e di conseguenza si potrebbe far saltare la memoria disponibile.

Questa è tradizionalmente gestita utilizzando la cache, di mettere in cache solo gli ultimi risultati n (su misura per occupare una data quantità di memoria) e quando si dispone già di articoli n memorizzati nella cache e desidera aggiungere una più recente, è eliminare il più vecchio.

Per questa congettura ci potrebbe essere un'altra strategia a disposizione, anche se un po 'più difficile da implementare. L'idea di base è che si deve solo modi per raggiungere un dato numero x:

  • da 2*x
  • da (x-1)/3

Quindi se in cache i risultati di 2*x e (x-1)/3 non v'è alcun punto in caching x più >> si otterrà mai più chiamato (a meno che non si desidera stampare la sequenza alla fine ... ma è solo una volta ). Lascio a voi di approfittare di questo in modo che la cache non cresce troppo:)

Il mio sforzo in C #, tempo di esecuzione <1 secondo con LINQPad:

var cache = new Dictionary<long, long>();
long highestcount = 0;
long highestvalue = 0;
for (long a = 1; a < 1000000; a++)
{
    long count = 0;
    long i = a;
    while (i != 1)
    {
        long cachedCount = 0;
        if (cache.TryGetValue(i, out cachedCount)) //See if current value has already had number of steps counted & stored in cache
        {
            count += cachedCount; //Current value found, return cached count for this value plus number of steps counted in current loop
            break;
        }
        if (i % 2 == 0)
            i = i / 2;
        else
            i = (3 * i) + 1;
        count++;
    }
    cache.Add(a, count); //Store number of steps counted for current value
    if (count > highestcount)
    {
        highestvalue = a;
        highestcount = count;
    }
}
Console.WriteLine("Starting number:" + highestvalue.ToString() + ", terms:" + highestcount.ToString());

Risoluzione del problema unsigned int nella domanda iniziale.

array aggiunto per memorizzare valori pre-calcolati.

include <stdio.h>                                                                                                                                     
#define LIMIT 1000000

unsigned int dp_array[LIMIT+1];

unsigned int iteration(unsigned int value)
{
 if(value%2==0)
  return (value/2);
 else
  return (3*value+1);
}

unsigned int count_iterations(unsigned int value)
{
 int count=1;
 while(value!=1)
 {
 if ((value<=LIMIT) && (dp_array[value]!=0)){
   count+= (dp_array[value] -1);
   break;
  } else {
   value=iteration(value);
   count++;
  }
 }
 return count;
}

int main()
{
 int iteration_count=0, max=0;
 int i,count;
 for(i=0;i<=LIMIT;i++){
  dp_array[i]=0;
 }

 for (i=1; i<LIMIT; i++)
 {
//  printf("Current iteration : %d \t", i);
  iteration_count=count_iterations(i);
  dp_array[i]=iteration_count;
//  printf(" %d \t", iteration_count);
  if (iteration_count>max)
   {
   max=iteration_count;
   count=i;
   }
//  printf(" %d \n", max);

 }

 printf("Count = %d\ni = %d\n",max,count);

}

o / p: Count = 525 i = 837.799

soluzione Haskell, due secondi tempo di esecuzione.

thomashartman@yucca:~/collatz>ghc -O3 -fforce-recomp --make collatz.hs
[1 of 1] Compiling Main             ( collatz.hs, collatz.o )
Linking collatz ...
thomashartman@yucca:~/collatz>time ./collatz
SPOILER REDACTED
real    0m2.881s

-. Forse avrei potuto ottenere un po 'più veloce utilizzando un hash invece di una mappa

import qualified Data.Map as M
import Control.Monad.State.Strict
import Data.List (maximumBy)
import Data.Function (on)

nextCollatz :: Integer -> Integer
nextCollatz n | even n = n `div` 2
               | otherwise = 3 * n + 1

newtype CollatzLength = CollatzLength Integer
  deriving (Read,Show,Eq,Ord)

main = print longestCollatzSequenceUnderAMill 
longestCollatzSequenceUnderAMill = longestCollatzLength [1..1000000]
-- sanity checks
tCollatzLengthNaive = CollatzLength 10 == collatzLengthNaive 13 
tCollatzLengthMemoized = (CollatzLength 10) == evalState (collatzLengthMemoized 13) M.empty

-- theoretically could be nonterminating. Since we're not in Agda, we'll not worry about it.
collatzLengthNaive :: Integer -> CollatzLength
collatzLengthNaive 1 = CollatzLength 1
collatzLengthNaive n = let CollatzLength nextLength = collatzLengthNaive (nextCollatz n)
                       in  CollatzLength $ 1 + nextLength

-- maybe it would be better to use hash here?
type CollatzLengthDb = M.Map Integer CollatzLength
type CollatzLengthState = State CollatzLengthDb 

-- handy for testing
cLM :: Integer -> CollatzLength
cLM n = flip evalState M.empty $ (collatzLengthMemoized n) 

collatzLengthMemoized :: Integer -> CollatzLengthState CollatzLength
collatzLengthMemoized 1 = return $ CollatzLength 1
collatzLengthMemoized n = do
  lengthsdb <- get
  case M.lookup n lengthsdb of 
    Nothing -> do let n' = nextCollatz n 
                  CollatzLength lengthN' <- collatzLengthMemoized n'
                  put $ M.insert n' (CollatzLength lengthN') lengthsdb
                  return $ CollatzLength $ lengthN' + 1
    Just lengthN -> return lengthN

longestCollatzLength :: [Integer] -> (Integer,CollatzLength)
longestCollatzLength xs = flip evalState M.empty $ do 
  foldM f (1,CollatzLength 1) xs
  where f maxSoFar@(maxN,lengthMaxN) nextN = do
          lengthNextN <- collatzLengthMemoized nextN
          let newMaxCandidate = (nextN,lengthNextN)
          return $ maximumBy (compare `on` snd) [maxSoFar, newMaxCandidate]

=============================================== =================================

E qui è un'altra soluzione Haskell, utilizzando il pacchetto monade-memo. Purtroppo, questo ha un errore di spazio di stack che non pregiudica il memoizer laminati-my-own sopra.

./ collatzMemo + RTS -K83886080 -RTS # questo produce la risposta, ma sarebbe bettter per eliminare lo spazio di fuga

{-# Language GADTs, TypeOperators #-} 

import Control.Monad.Memo
import Data.List (maximumBy)
import Data.Function (on)

nextCollatz :: Integer -> Integer
nextCollatz n | even n = n `div` 2
               | otherwise = 3 * n + 1

newtype CollatzLength = CollatzLength Integer
  deriving (Read,Show,Eq,Ord)

main = print longestCollatzSequenceUnderAMill 
longestCollatzSequenceUnderAMill = longestCollatzLength [1..1000000]

collatzLengthMemoized :: Integer -> Memo Integer CollatzLength CollatzLength
collatzLengthMemoized 1 = return $ CollatzLength 1
collatzLengthMemoized n = do
  CollatzLength nextLength <- memo collatzLengthMemoized (nextCollatz n)
  return $ CollatzLength $ 1 + nextLength 
{- Stack space error
./collatzMemo
Stack space overflow: current size 8388608 bytes.
Use `+RTS -Ksize -RTS' to increase it.

Stack error does not effect rolled-my-own memoizer at
http://stackoverflow.com/questions/2643260/project-euler-question-14-collatz-problem
-}
longestCollatzLength :: [Integer] -> (Integer,CollatzLength)
longestCollatzLength xs = startEvalMemo $ do
  foldM f (1,CollatzLength 1) xs
  where f maxSoFar nextN = do
          lengthNextN <- collatzLengthMemoized nextN
          let newMaxCandidate = (nextN,lengthNextN)
          return $ maximumBy (compare `on` snd) [maxSoFar, newMaxCandidate]

{-
-- sanity checks
tCollatzLengthNaive = CollatzLength 10 == collatzLengthNaive 13 
tCollatzLengthMemoized = (CollatzLength 10) ==startEvalMemo (collatzLengthMemoized 13) 

-- theoretically could be nonterminating. Since we're not in Agda, we'll not worry about it.
collatzLengthNaive :: Integer -> CollatzLength
collatzLengthNaive 1 = CollatzLength 1
collatzLengthNaive n = let CollatzLength nextLength = collatzLengthNaive (nextCollatz n)
                       in  CollatzLength $ 1 + nextLength
-}

=============================================== ===

un altro, scomposto più bene. non correre più veloce, ma ancora ben al di sotto di un minuto

import qualified Data.Map as M
import Control.Monad.State
import Data.List (maximumBy, nubBy)
import Data.Function (on)

nextCollatz :: Integer -> Integer
nextCollatz n | even n = n `div` 2
               | otherwise = 3 * n + 1

newtype CollatzLength = CollatzLength Integer
  deriving (Read,Show,Eq,Ord)

main = print longestCollatzSequenceUnderAMillStreamy -- AllAtOnce                                                                                                                                                                                                         

collatzes = evalState collatzesM M.empty
longestCollatzSequenceUnderAMillAllAtOnce = winners . takeWhile ((<=1000000) .fst) $ collatzes
longestCollatzSequenceUnderAMillStreamy = takeWhile ((<=1000000) .fst) . winners  $ collatzes


-- sanity checks                                                                                                                                                                                                                                                          
tCollatzLengthNaive = CollatzLength 10 == collatzLengthNaive 13
tCollatzLengthMemoized = (CollatzLength 10) == evalState (collatzLengthMemoized 13) M.empty

-- maybe it would be better to use hash here?                                                                                                                                                                                                                             
type CollatzLengthDb = M.Map Integer CollatzLength
type CollatzLengthState = State CollatzLengthDb

collatzLengthMemoized :: Integer -> CollatzLengthState CollatzLength
collatzLengthMemoized 1 = return $ CollatzLength 1
collatzLengthMemoized n = do
  lengthsdb <- get
  case M.lookup n lengthsdb of
    Nothing -> do let n' = nextCollatz n
                  CollatzLength lengthN' <- collatzLengthMemoized n'
                  put $ M.insert n' (CollatzLength lengthN') lengthsdb
                  return $ CollatzLength $ lengthN' + 1
    Just lengthN -> return lengthN

collatzesM :: CollatzLengthState [(Integer,CollatzLength)]
collatzesM = mapM (\x -> do (CollatzLength l) <- collatzLengthMemoized x
                            return (x,(CollatzLength l)) ) [1..]

winners :: Ord b => [(a, b)] -> [(a, b)]
winners xs = (nubBy ( (==) `on` snd )) $ scanl1 (maxBy snd) xs

maxBy :: Ord b => (a -> b) -> a -> a -> a
maxBy f x y = if f x > f y then x else y
Autorizzato sotto: CC-BY-SA insieme a attribuzione
Non affiliato a StackOverflow
scroll top