Domanda

Voglio separare le cifre di un numero intero, ad esempio 12345, in una matrice di byte {1,2,3,4,5}, ma voglio il modo più efficace per farlo, perché il mio programma lo fa milioni di volte.

Qualche suggerimento? Grazie.

È stato utile?

Soluzione

Che ne dici di:

public static int[] ConvertToArrayOfDigits(int value)
{
    int size = DetermineDigitCount(value);
    int[] digits = new int[size];
    for (int index = size - 1; index >= 0; index--)
    {
        digits[index] = value % 10;
        value = value / 10;
    }
    return digits;
}

private static int DetermineDigitCount(int x)
{
    // This bit could be optimised with a binary search
    return x < 10 ? 1
         : x < 100 ? 2
         : x < 1000 ? 3
         : x < 10000 ? 4
         : x < 100000 ? 5
         : x < 1000000 ? 6
         : x < 10000000 ? 7
         : x < 100000000 ? 8
         : x < 1000000000 ? 9
         : 10;
}

Nota che questo non affronterà i numeri negativi ... ne hai bisogno?

EDIT: ecco una versione che memorizza i risultati per meno di 10000, come suggerito da Eric. Se puoi assolutamente garantire che non modificherai il contenuto dell'array restituito, puoi rimuovere la chiamata Clone . Ha anche la proprietà utile di ridurre il numero di controlli per determinare la lunghezza di "grande" numeri - e piccoli numeri passeranno attraverso quel codice una volta comunque :)

private static readonly int[][] memoizedResults = new int[10000][];

public static int[] ConvertToArrayOfDigits(int value)
{
    if (value < 10000)
    {
        int[] memoized = memoizedResults[value];
        if (memoized == null) {
            memoized = ConvertSmall(value);
            memoizedResults[value] = memoized;
        }
        return (int[]) memoized.Clone();
    }
    // We know that value >= 10000
    int size = value < 100000 ? 5
         : value < 1000000 ? 6
         : value < 10000000 ? 7
         : value < 100000000 ? 8
         : value < 1000000000 ? 9
         : 10;

    return ConvertWithSize(value, size);
}

private static int[] ConvertSmall(int value)
{
    // We know that value < 10000
    int size = value < 10 ? 1
             : value < 100 ? 2
             : value < 1000 ? 3 : 4;
    return ConvertWithSize(value, size);
}

private static int[] ConvertWithSize(int value, int size)
{
    int[] digits = new int[size];
    for (int index = size - 1; index >= 0; index--)
    {
        digits[index] = value % 10;
        value = value / 10;
    }
    return digits;
}

Nota che al momento questo non cerca di essere thread-safe. Potrebbe essere necessario aggiungere una barriera di memoria per assicurarsi che la scrittura sui risultati memoized non sia visibile fino a quando le scritture all'interno del singolo risultato sono visibili. Ho smesso di provare a ragionare su queste cose a meno che non sia assolutamente necessario. Sono sicuro che puoi renderlo privo di blocchi con sforzo, ma dovresti davvero convincere qualcuno molto intelligente a farlo se ne hai davvero bisogno.

EDIT: ho appena capito che il "grande" il caso può utilizzare il "piccolo" case: dividi il numero grande in due numeri piccoli e usa i risultati memorizzati. Ci proverò dopo cena e scriverò un punto di riferimento ...

EDIT: Okay, sei pronto per una grande quantità di codice? Mi sono reso conto che almeno per i numeri uniformemente casuali , otterrai "grande" numeri molto più spesso di quelli piccoli, quindi è necessario ottimizzare per questo. Certo, questo potrebbe non essere il caso dei dati reali, ma comunque ... significa che ora faccio i miei test di dimensione nell'ordine opposto, sperando prima in numeri grandi.

Ho un punto di riferimento per il codice originale, la semplice memoizzazione e quindi il codice estremamente srotolato.

Risultati (in ms):

Simple: 3168
SimpleMemo: 3061
UnrolledMemo: 1204

Codice:

using System;
using System.Diagnostics;

class DigitSplitting
{
    static void Main()        
    {
        Test(Simple);
        Test(SimpleMemo);
        Test(UnrolledMemo);
    }

    const int Iterations = 10000000;

    static void Test(Func<int, int[]> candidate)
    {
        Random rng = new Random(0);
        Stopwatch sw = Stopwatch.StartNew();
        for (int i = 0; i < Iterations; i++)
        {
            candidate(rng.Next());
        }
        sw.Stop();
        Console.WriteLine("{0}: {1}",
            candidate.Method.Name, (int) sw.ElapsedMilliseconds);            
    }

    #region Simple
    static int[] Simple(int value)
    {
        int size = DetermineDigitCount(value);
        int[] digits = new int[size];
        for (int index = size - 1; index >= 0; index--)
        {
            digits[index] = value % 10;
            value = value / 10;
        }
        return digits;
    }

    private static int DetermineDigitCount(int x)
    {
        // This bit could be optimised with a binary search
        return x < 10 ? 1
             : x < 100 ? 2
             : x < 1000 ? 3
             : x < 10000 ? 4
             : x < 100000 ? 5
             : x < 1000000 ? 6
             : x < 10000000 ? 7
             : x < 100000000 ? 8
             : x < 1000000000 ? 9
             : 10;
    }
    #endregion Simple    

    #region SimpleMemo
    private static readonly int[][] memoizedResults = new int[10000][];

    public static int[] SimpleMemo(int value)
    {
        if (value < 10000)
        {
            int[] memoized = memoizedResults[value];
            if (memoized == null) {
                memoized = ConvertSmall(value);
                memoizedResults[value] = memoized;
            }
            return (int[]) memoized.Clone();
        }
        // We know that value >= 10000
        int size = value >= 1000000000 ? 10
                 : value >= 100000000 ? 9
                 : value >= 10000000 ? 8
                 : value >= 1000000 ? 7
                 : value >= 100000 ? 6
                 : 5;

        return ConvertWithSize(value, size);
    }

    private static int[] ConvertSmall(int value)
    {
        // We know that value < 10000
        return value >= 1000 ? new[] { value / 1000, (value / 100) % 10,
                                           (value / 10) % 10, value % 10 }
              : value >= 100 ? new[] { value / 100, (value / 10) % 10, 
                                         value % 10 }
              : value >= 10 ? new[] { value / 10, value % 10 }
              : new int[] { value };
    }

    private static int[] ConvertWithSize(int value, int size)
    {
        int[] digits = new int[size];
        for (int index = size - 1; index >= 0; index--)
        {
            digits[index] = value % 10;
            value = value / 10;
        }
        return digits;
    }
    #endregion

    #region UnrolledMemo
    private static readonly int[][] memoizedResults2 = new int[10000][];
    private static readonly int[][] memoizedResults3 = new int[10000][];
    static int[] UnrolledMemo(int value)
    {
        if (value < 10000)
        {
            return (int[]) UnclonedConvertSmall(value).Clone();
        }
        if (value >= 1000000000)
        {
            int[] ret = new int[10];
            int firstChunk = value / 100000000;
            ret[0] = firstChunk / 10;
            ret[1] = firstChunk % 10;
            value -= firstChunk * 100000000;
            int[] secondChunk = ConvertSize4(value / 10000);
            int[] thirdChunk = ConvertSize4(value % 10000);
            ret[2] = secondChunk[0];
            ret[3] = secondChunk[1];
            ret[4] = secondChunk[2];
            ret[5] = secondChunk[3];
            ret[6] = thirdChunk[0];
            ret[7] = thirdChunk[1];
            ret[8] = thirdChunk[2];
            ret[9] = thirdChunk[3];
            return ret;
        } 
        else if (value >= 100000000)
        {
            int[] ret = new int[9];
            int firstChunk = value / 100000000;
            ret[0] = firstChunk;
            value -= firstChunk * 100000000;
            int[] secondChunk = ConvertSize4(value / 10000);
            int[] thirdChunk = ConvertSize4(value % 10000);
            ret[1] = secondChunk[0];
            ret[2] = secondChunk[1];
            ret[3] = secondChunk[2];
            ret[4] = secondChunk[3];
            ret[5] = thirdChunk[0];
            ret[6] = thirdChunk[1];
            ret[7] = thirdChunk[2];
            ret[8] = thirdChunk[3];
            return ret;
        }
        else if (value >= 10000000)
        {
            int[] ret = new int[8];
            int[] firstChunk = ConvertSize4(value / 10000);
            int[] secondChunk = ConvertSize4(value % 10000);
            ret[0] = firstChunk[0];
            ret[1] = firstChunk[0];
            ret[2] = firstChunk[0];
            ret[3] = firstChunk[0];
            ret[4] = secondChunk[0];
            ret[5] = secondChunk[1];
            ret[6] = secondChunk[2];
            ret[7] = secondChunk[3];
            return ret;
        }
        else if (value >= 1000000)
        {
            int[] ret = new int[7];
            int[] firstChunk = ConvertSize4(value / 10000);
            int[] secondChunk = ConvertSize4(value % 10000);
            ret[0] = firstChunk[1];
            ret[1] = firstChunk[2];
            ret[2] = firstChunk[3];
            ret[3] = secondChunk[0];
            ret[4] = secondChunk[1];
            ret[5] = secondChunk[2];
            ret[6] = secondChunk[3];
            return ret;
        }
        else if (value >= 100000)
        {
            int[] ret = new int[6];
            int[] firstChunk = ConvertSize4(value / 10000);
            int[] secondChunk = ConvertSize4(value % 10000);
            ret[0] = firstChunk[2];
            ret[1] = firstChunk[3];
            ret[2] = secondChunk[0];
            ret[3] = secondChunk[1];
            ret[4] = secondChunk[2];
            ret[5] = secondChunk[3];
            return ret;
        }
        else
        {
            int[] ret = new int[5];
            int[] chunk = ConvertSize4(value % 10000);
            ret[0] = value / 10000;
            ret[1] = chunk[0];
            ret[2] = chunk[1];
            ret[3] = chunk[2];
            ret[4] = chunk[3];
            return ret;
        }
    }

    private static int[] UnclonedConvertSmall(int value)
    {
        int[] ret = memoizedResults2[value];
        if (ret == null)
        {
            ret = value >= 1000 ? new[] { value / 1000, (value / 100) % 10,
                                           (value / 10) % 10, value % 10 }
              : value >= 100 ? new[] { value / 100, (value / 10) % 10, 
                                         value % 10 }
              : value >= 10 ? new[] { value / 10, value % 10 }
              : new int[] { value };
            memoizedResults2[value] = ret;
        }
        return ret;
    }

    private static int[] ConvertSize4(int value)
    {
        int[] ret = memoizedResults3[value];
        if (ret == null)
        {
            ret = new[] { value / 1000, (value / 100) % 10,
                         (value / 10) % 10, value % 10 };
            memoizedResults3[value] = ret;
        }
        return ret;
    }
    #endregion UnrolledMemo
}

Altri suggerimenti

1 + Math.Log10 (num) fornirà il numero di cifre senza alcuna ricerca / loop:

public static byte[] Digits(int num)
{
    int nDigits = 1 + Convert.ToInt32(Math.Floor(Math.Log10(num)));
    byte[] digits = new byte[nDigits];
    int index = nDigits - 1;
    while (num > 0) {
        byte digit = (byte) (num % 10);
        digits[index] = digit;
        num = num / 10;
        index = index - 1;
    }
    return digits;
}

Modifica: Forse più bello:

public static byte[] Digits(int num)
{
    int nDigits = 1 + Convert.ToInt32(Math.Floor(Math.Log10(num)));
    byte[] digits = new byte[nDigits];

    for(int i = nDigits - 1; i != 0; i--)
    {
        digits[i] = (byte)(num % 10);
        num = num / 10;
    }
    return digits;
} 

converte un numero intero in stringa e quindi usa String.Chars []

Milioni di volte non è poi così tanto.

// input: int num >= 0
List<byte> digits = new List<byte>();
while (num > 0)
{
   byte digit = (byte) (num % 10);
   digits.Insert(0, digit);  // Insert to preserve order
   num = num / 10;
}

// if you really want it as an array
byte[] bytedata = digits.ToArray();

Si noti che questo potrebbe essere modificato per far fronte a numeri negativi se si cambia byte in sbyte e si verifica num! = 0 .

'Will' vs 'Does'? Sono un grande fan dell'ottimizzazione del codice dopo che è stato scritto, profilato ed è stato determinato per essere il collo di bottiglia.

Solo per divertimento, ecco un modo per separare tutte le cifre usando una sola istruzione C #. Funziona in questo modo: l'espressione regolare usa la versione stringa del numero, divide le sue cifre in un array di stringhe e infine il metodo ConvertAll esterno crea un array int dall'array di stringhe.

    int num = 1234567890;

    int [] arrDigits = Array.ConvertAll<string, int>(
        System.Text.RegularExpressions.Regex.Split(num.ToString(), @"(?!^)(?!$)"),
        str => int.Parse(str)
        );

    // resulting array is [1,2,3,4,5,6,7,8,9,0]

Dal punto di vista dell'efficienza? ... Non sono sicuro rispetto ad alcune delle altre risposte veloci che vedo qui. Qualcuno dovrebbe testarlo.

Forse un piccolo ciclo di srotolamento?

int num = 147483647;
int nDigits = 1 + Convert.ToInt32(Math.Floor(Math.Log10(num)));
byte[] array = new byte[10] {
            (byte)(num / 1000000000 % 10),
            (byte)(num / 100000000 % 10),
            (byte)(num / 10000000 % 10),
            (byte)(num / 1000000 % 10),
            (byte)(num / 100000 % 10),
            (byte)(num / 10000 % 10),
            (byte)(num / 1000 % 10),
            (byte)(num / 100 % 10),
            (byte)(num / 10 % 10),
            (byte)(num % 10)};
byte[] digits;// = new byte[nDigits];
digits = array.Skip(array.Length-nDigits).ToArray();

Grazie sopra per il Logy cosay ..;)

Si è parlato di benchmarking ...

Ho completamente srotolato i loop e confrontato con la variante memorizzata accettata di Jons, e ottengo un tempo costantemente più veloce con questo: -

    static int[] ConvertToArrayOfDigits_unrolled(int num)
    {
        if (num < 10)
        {
            return new int[1] 
            {
                (num % 10) 
            };
        }
        else if (num < 100)
        {
            return new int[2] 
            {
                (num / 10 % 10),
                (num % 10)
            };
        }
        else if (num < 1000)
        {
            return new int[3] {
            (num / 100 % 10),
            (num / 10 % 10),
            (num % 10)};
        }
        else if (num < 10000)
        {
            return new int[4] {
            (num / 1000 % 10),
            (num / 100 % 10),
            (num / 10 % 10),
            (num % 10)};
        }
        else if (num < 100000)
        {
            return new int[5] {
            (num / 10000 % 10),
            (num / 1000 % 10),
            (num / 100 % 10),
            (num / 10 % 10),
            (num % 10)};
        }
        else if (num < 1000000)
        {
            return new int[6] {
            (num / 100000 % 10),
            (num / 10000 % 10),
            (num / 1000 % 10),
            (num / 100 % 10),
            (num / 10 % 10),
            (num % 10)};
        }
        else if (num < 10000000)
        {
            return new int[7] {
            (num / 1000000 % 10),
            (num / 100000 % 10),
            (num / 10000 % 10),
            (num / 1000 % 10),
            (num / 100 % 10),
            (num / 10 % 10),
            (num % 10)};
        }
        else if (num < 100000000)
        {
            return new int[8] {
            (num / 10000000 % 10),
            (num / 1000000 % 10),
            (num / 100000 % 10),
            (num / 10000 % 10),
            (num / 1000 % 10),
            (num / 100 % 10),
            (num / 10 % 10),
            (num % 10)};
        }
        else if (num < 1000000000)
        {
            return new int[9] {
            (num / 100000000 % 10),
            (num / 10000000 % 10),
            (num / 1000000 % 10),
            (num / 100000 % 10),
            (num / 10000 % 10),
            (num / 1000 % 10),
            (num / 100 % 10),
            (num / 10 % 10),
            (num % 10)};
        }
        else
        {
            return new int[10] {
            (num / 1000000000 % 10),
            (num / 100000000 % 10),
            (num / 10000000 % 10),
            (num / 1000000 % 10),
            (num / 100000 % 10),
            (num / 10000 % 10),
            (num / 1000 % 10),
            (num / 100 % 10),
            (num / 10 % 10),
            (num % 10)};
        }
    }

Può darsi che io abbia incasinato da qualche parte - non ho molto tempo per divertirmi e giocare, ma lo stavo valutando come il 20% più veloce.

Se riesci a cavartela con zeri iniziali è molto più semplice.

    void Test()
    { 
        // Note: 10 is the maximum number of digits.
        int[] xs = new int[10];
        System.Random r = new System.Random();
        for (int i=0; i < 10000000; ++i)
            Convert(xs, r.Next(int.MaxValue));
    }

    // Notice, I don't allocate and return an array each time.
    public void Convert(int[] digits, int val)
    {
        for (int i = 0; i < 10; ++i)
        {
            digits[10 - i - 1] = val % 10;
            val /= 10;
        }
    }

EDIT: ecco una versione più veloce. Sul mio computer è stato testato più velocemente di due algoritmi di Jon Skeet, ad eccezione della sua versione memorizzata:

static void Convert(int[] digits, int val)
{
  digits[9] = val % 10; val /= 10;
  digits[8] = val % 10; val /= 10;
  digits[7] = val % 10; val /= 10;
  digits[6] = val % 10; val /= 10;
  digits[5] = val % 10; val /= 10;
  digits[4] = val % 10; val /= 10;
  digits[3] = val % 10; val /= 10;
  digits[2] = val % 10; val /= 10;
  digits[1] = val % 10; val /= 10;
  digits[0] = val % 10; val /= 10;     
} 

divide e mod tendono ad essere operazioni lente. Volevo scoprire se una soluzione che utilizza moltiplicare e sottrarre sarebbe più veloce e sembra essere (sul mio computer):

    public static void ConvertToArrayOfDigits2(int value, int[] digits)
    {
        double v = value;
        double vby10 = v * .1;

        for (int index = digits.Length - 1; index >= 0; index--)
        {
            int ivby10 = (int)vby10;
            digits[index] = (int)(v)- ivby10* 10;
            v = ivby10;
            vby10 = ivby10 * .1;
        }       
    }

Sto passando un array invece di allocarlo ogni volta per togliere l'allocatore di memoria e la lunghezza dall'equazione. Questa versione produrrà zero iniziali se l'array è più lungo del numero. Rispetto a una versione analogamente convertita dell'esempio di Jon:

    public static void ConvertToArrayOfDigits(int value, int[] digits){

        for (int index = digits.Length - 1; index >= 0; index--)    { 
            digits[index] = value % 10;    
            value = value / 10;  
        }   
    }

la versione no divide / mod ha impiegato circa 50 tempo in più per generare tutti gli array fino a un determinato numero. Ho anche provato a usare i float ed era solo circa il 5-10% più lento (la versione doppia era più veloce della versione float).

Solo perché mi dava fastidio, ecco una versione srotolata che è di nuovo leggermente più veloce:

        public static void ConvertToArrayOfDigits3(int value, int[] digits)
    {
        double v = value;
        double vby10 = v * .1;
        int ivby10;

        switch(digits.Length -1){
            default:
                throw new ArgumentOutOfRangeException();
            case 10:
                ivby10 = (int)vby10;
                digits[10] = (int)(v) - ivby10 * 10;
                v = ivby10;
                vby10 = ivby10 * .1;
                goto case 9;
            case 9:
                ivby10 = (int)vby10;
                digits[9] = (int)(v) - ivby10 * 10;
                v = ivby10;
                vby10 = ivby10 * .1;
                goto case 8;
            case 8:
                ivby10 = (int)vby10;
                digits[8] = (int)(v) - ivby10 * 10;
                v = ivby10;
                vby10 = ivby10 * .1;
                goto case 7;
            case 7:
                ivby10 = (int)vby10;
                digits[7] = (int)(v) - ivby10 * 10;
                v = ivby10;
                vby10 = ivby10 * .1;
                goto case 6;
            case 6:
                ivby10 = (int)vby10;
                digits[6] = (int)(v) - ivby10 * 10;
                v = ivby10;
                vby10 = ivby10 * .1;
                goto case 5;
            case 5:
                ivby10 = (int)vby10;
                digits[5] = (int)(v) - ivby10 * 10;
                v = ivby10;
                vby10 = ivby10 * .1;
                goto case 4;
            case 4:
                ivby10 = (int)vby10;
                digits[4] = (int)(v) - ivby10 * 10;
                v = ivby10;
                vby10 = ivby10 * .1;
                goto case 3;
            case 3:
                ivby10 = (int)vby10;
                digits[3] = (int)(v) - ivby10 * 10;
                v = ivby10;
                vby10 = ivby10 * .1;
                goto case 2;
            case 2:
                ivby10 = (int)vby10;
                digits[2] = (int)(v) - ivby10 * 10;
                v = ivby10;
                vby10 = ivby10 * .1;
                goto case 1;
            case 1:
                ivby10 = (int)vby10;
                digits[1] = (int)(v) - ivby10 * 10;
                v = ivby10;
                vby10 = ivby10 * .1;
                goto case 0;
            case 0:
                ivby10 = (int)vby10;
                digits[0] = (int)(v) - ivby10 * 10;
                break;
        }

    }

L'allocazione di un nuovo int [] ogni volta richiede una quantità significativa di tempo secondo i miei test. Se sai che questi valori verranno utilizzati una volta e eliminati prima della chiamata successiva, puoi invece riutilizzare un array statico per un significativo miglioramento della velocità:

    private static readonly int[] _buffer = new int[10];
    public static int[] ConvertToArrayOfDigits(int value)
    {
        for (int index = 9; index >= 0; index--)
        {
            _buffer[index] = value % 10;
            value = value / 10;
        }
        return _buffer;
    }

per mantenere il codice piccolo, sto restituendo zero finali per numeri più piccoli, ma questo potrebbe essere facilmente modificato usando invece 9 diversi array statici (o un array di array).

In alternativa, potrebbero essere forniti 2 metodi ConvertToArrayOfDigits separati, uno che prende un array int preconfigurato come parametro extra e uno senza quello che crea il buffer risultante prima di chiamare il primo metodo.

    public static void ConvertToArrayOfDigits(int value, int[] digits) { ... }
    public static int[] ConvertToArrayOfDigits(int value)
    {
        int size = DetermineDigitCount(value);
        int[] digits = new int[size];
        ConvertToArrayOfDigits(value, digits);
        return digits;
    }

In questo modo, spetterebbe al chiamante creare potenzialmente un buffer riutilizzabile statico se il suo caso d'uso lo consente.

Non ho analizzato questo o niente, ma penso che questa sarebbe la risposta più semplice. Correggimi se sbaglio.

    Dim num As Integer = 147483647
    Dim nDigits As Integer = 1 + Convert.ToInt32(Math.Floor(Math.Log10(num)))
    Dim result(nDigits - 1) As Integer

    For a As Integer = 1 To nDigits
        result(a - 1) = Int(num / (10 ^ (nDigits - a))) Mod 10
    Next

** EDIT **

Revisionata la funzione perché gli esponenti sembrano essere molto costosi.

Private Function Calc(ByVal num As Integer) As Integer()
    Dim nDigits As Int64 = 1 + Convert.ToInt64(Math.Floor(Math.Log10(num)))
    Dim result(nDigits - 1) As Integer
    Dim place As Integer = 1

    For a As Integer = 1 To nDigits
        result(nDigits - a) = Int(num / place) Mod 10
        place = place * 10
    Next

    Return result
End Function

Questo valore di riferimento è di circa 775 k / sec (per numeri di 9 cifre o meno). Lascia cadere le cifre massime a 7 e si trova a 885k / s. 5 cifre a 1,1 m / s.

Autorizzato sotto: CC-BY-SA insieme a attribuzione
Non affiliato a StackOverflow
scroll top