質問

次の言語は決められないと思いますが、それを表示するために縮小を考えることはできません。 私はいくつかのヒントや直感に感謝します

$ EQ= $ {span class="math-container"> $ $ | $ m1 \、\、\、および\、\、\、m2 \、\、\、\、\、\、\、\、\、\、\、\、\、l(m1)\、∩\、l(m2)\、| \、$$= 2020 \、$ }

役に立ちましたか?

解決

問題 $ \ langle m、x \ rangle $ を停止するインスタンスを考えます。 $ 0 $ $ m_x $ の新しいチューリングマシンを作成します。数学コンテナ "> $ 00 $ 、 $ 000 \ ldots 0 ^ {2020} $ machine $ m $ 入力 $ x $ を停止します。そして他のすべての文字列を拒否します。 $ m_u $ をすべての文字列を受け入れるTMになりましょう。

$ | l(m_x)\ cap l(m_u)| $ mの場合、$ は2020になります。 $ $ x $ でhalts、それ以外の場合は $ 0 $

証明は簡単に続きます。

(非公式)ヒント:あなたがそのような質問をしているときはいつでも、与えられた言語の仮説決定機器を使用して停止問題(または他の何らかの修復可能な言語)をどのように解決することができます。

他のヒント

welcome to the site :)

I assume you already know that the Halting problem $L_H$ is undecidable (as it is usually the first specific undecidable language students learn of). So, let us try and find a reduction $L_H \leq EQ$.

We want to know whether some given TM $M$ halts given the input word $w$ by transforming the pair $\langle M, w \rangle$ to some $EQ$-instance $f(\langle M, w \rangle) = \langle M_1, M_2 \rangle$ such that $\langle M, w \rangle \in L_H$ if and only if $\langle M_1, M_2 \rangle \in EQ$. Let us consider some dummy TM $M_{2020}$ which just accepts 2020 inputs (any set of 2020 words will do the trick) and modify $M_{2020}$ such that it only ever accepts if $M$ halts on $w$ to get another TM $M_{2020}(M, w)$. Since we know $M$ and $w$ when we construct $M_{2020}(M, w)$, we can implement it to do the following:

  1. Read the input and if it is one of the 2020 words accepted by $M_{2020}$, make note of that (we can use the states to store this).
  2. Clear the tape and write $w$ to it.
  3. Run $M$ on $w$.
  4. If $M$ halts on $w$, accept the original input.

Such a construction can be performed by another TM, this is a bit tedious to show formally but by noting that we can essentially "embed" $M$ in $M_{2020}(M, w)$ it should be intuitive that this can be done (as $M_{2020}$ is a fixed TM).

Now observe that $M_{2020}(M, w)$ accepts some input $x \in L(M_{2020})$ precisely when $M$ halts on $w$, hence we have that $L(M_{2020}) = L(M_{2020}(M, w))$ if and only if $\langle M, w \rangle \in L_H$, otherwise we have $L(M_{2020}(M, w)) = \emptyset$. It follows that $$ | L(M_{2020}(M, w)) \cap L(M_{2020}) | = \begin{cases} 2020, & \text{if $M$ halts on $w$} \\ 0, & \text{otherwise} \end{cases} $$ and thus (denoting $\langle M_{2020}, M_{2020}(M, w) \rangle$ as $f(\langle M, w \rangle$) we have $\langle M, w \rangle \in L_H \Leftrightarrow f(\langle M, w \rangle)$ and therefore a suitable reduction.

An easier way to prove that the language is not decidable is by using Rice's theorem which (roughly speaking) says that properties of functions computed by TMs (we call these semantic properties) cannot be decided algorithmically unless they are trivial. If we fix some TM $M_1$ and consider an arbitrary TM $M$ then asking whether $L(M_1) \cap L(M)$ has size 2020 is such a semantic property and hence Rice's theorem immediately gives us that $EQ$ is undecidable. The theorem (for me, at least) is basically the formal underpinning of the informal intuition I gave above.

ライセンス: CC-BY-SA帰属
所属していません cs.stackexchange
scroll top