質問

現在、私のように複数のベジエい距ます。私は現在使用し立体補間のポイントでのベジエの作品の一部の地域には、より高密度より他の証明業務粗めのテクスチャマッピングのための変数です。 ですが点bezierによる距離よりも金額は減ります。また、延長できるこの複数の接続曲線?

役に立ちましたか?

解決

距離P_0とP_3(立方晶形態)、ありだと思うんだってすることができるようにする.

距離曲線はアーク長:

図1http://www.codecogs.com/eq.latex?%5Cint_%7Bt_0%7D%5E%7Bt_1%7D%20%7B%20/P'(t)|%20dt

場所:

図2http://www.codecogs.com/eq.latex?P%27(t)%20=%20[%7Bx%27,y%27,z%27%7D]%20=%20[%7B%5Cfrac%7Bdx(t)%7D%7Bdt%7D,%5Cfrac%7Bdy(t)%7D%7Bdt%7D,%5Cfrac%7Bdz(t)%7D%7Bdt%7D%7D]

(休憩)

思いt_0=0のとき、t_1=1.0、dz(t)=0(2次元平面)。●

他のヒント

これを"円弧長によりパラメータ.書いた論文でこの数年前:

http://www.saccade.com/writing/graphics/RE-PARAM.PDF

その考え方としては、事前に計算するため"パラメーターライゼーション"曲線の曲線による。

そうすることを義務付けられているが、最近に走り込んだこの問題を作 UIBezierPath 拡張子の解決のため X 座標を与えられ Y 座標およびバイスします。書速いと感じました。

https://github.com/rkotzy/RKBezierMath

extension UIBezierPath {

func solveBezerAtY(start: CGPoint, point1: CGPoint, point2: CGPoint, end: CGPoint, y: CGFloat) -> [CGPoint] {

    // bezier control points
    let C0 = start.y - y
    let C1 = point1.y - y
    let C2 = point2.y - y
    let C3 = end.y - y

    // The cubic polynomial coefficients such that Bez(t) = A*t^3 + B*t^2 + C*t + D
    let A = C3 - 3.0*C2 + 3.0*C1 - C0
    let B = 3.0*C2 - 6.0*C1 + 3.0*C0
    let C = 3.0*C1 - 3.0*C0
    let D = C0

    let roots = solveCubic(A, b: B, c: C, d: D)

    var result = [CGPoint]()

    for root in roots {
        if (root >= 0 && root <= 1) {
            result.append(bezierOutputAtT(start, point1: point1, point2: point2, end: end, t: root))
        }
    }

    return result
}

func solveBezerAtX(start: CGPoint, point1: CGPoint, point2: CGPoint, end: CGPoint, x: CGFloat) -> [CGPoint] {

    // bezier control points
    let C0 = start.x - x
    let C1 = point1.x - x
    let C2 = point2.x - x
    let C3 = end.x - x

    // The cubic polynomial coefficients such that Bez(t) = A*t^3 + B*t^2 + C*t + D
    let A = C3 - 3.0*C2 + 3.0*C1 - C0
    let B = 3.0*C2 - 6.0*C1 + 3.0*C0
    let C = 3.0*C1 - 3.0*C0
    let D = C0

    let roots = solveCubic(A, b: B, c: C, d: D)

    var result = [CGPoint]()

    for root in roots {
        if (root >= 0 && root <= 1) {
            result.append(bezierOutputAtT(start, point1: point1, point2: point2, end: end, t: root))
        }
    }

    return result

}

func solveCubic(a: CGFloat?, var b: CGFloat, var c: CGFloat, var d: CGFloat) -> [CGFloat] {

    if (a == nil) {
        return solveQuadratic(b, b: c, c: d)
    }

    b /= a!
    c /= a!
    d /= a!

    let p = (3 * c - b * b) / 3
    let q = (2 * b * b * b - 9 * b * c + 27 * d) / 27

    if (p == 0) {
        return [pow(-q, 1 / 3)]

    } else if (q == 0) {
        return [sqrt(-p), -sqrt(-p)]

    } else {

        let discriminant = pow(q / 2, 2) + pow(p / 3, 3)

        if (discriminant == 0) {
            return [pow(q / 2, 1 / 3) - b / 3]

        } else if (discriminant > 0) {
            let x = crt(-(q / 2) + sqrt(discriminant))
            let z = crt((q / 2) + sqrt(discriminant))
            return [x - z - b / 3]
        } else {

            let r = sqrt(pow(-(p/3), 3))
            let phi = acos(-(q / (2 * sqrt(pow(-(p / 3), 3)))))

            let s = 2 * pow(r, 1/3)

            return [
                s * cos(phi / 3) - b / 3,
                s * cos((phi + CGFloat(2) * CGFloat(M_PI)) / 3) - b / 3,
                s * cos((phi + CGFloat(4) * CGFloat(M_PI)) / 3) - b / 3
            ]

        }

    }
}

func solveQuadratic(a: CGFloat, b: CGFloat, c: CGFloat) -> [CGFloat] {

    let discriminant = b * b - 4 * a * c;

    if (discriminant < 0) {
        return []

    } else {
        return [
            (-b + sqrt(discriminant)) / (2 * a),
            (-b - sqrt(discriminant)) / (2 * a)
        ]
    }

}

private func crt(v: CGFloat) -> CGFloat {
    if (v<0) {
        return -pow(-v, 1/3)
    }
    return pow(v, 1/3)
}

private func bezierOutputAtT(start: CGPoint, point1: CGPoint, point2: CGPoint, end: CGPoint, t: CGFloat) -> CGPoint {

    // bezier control points
    let C0 = start
    let C1 = point1
    let C2 = point2
    let C3 = end

    // The cubic polynomial coefficients such that Bez(t) = A*t^3 + B*t^2 + C*t + D
    let A = CGPointMake(C3.x - 3.0*C2.x + 3.0*C1.x - C0.x, C3.y - 3.0*C2.y + 3.0*C1.y - C0.y)
    let B = CGPointMake(3.0*C2.x - 6.0*C1.x + 3.0*C0.x, 3.0*C2.y - 6.0*C1.y + 3.0*C0.y)
    let C = CGPointMake(3.0*C1.x - 3.0*C0.x, 3.0*C1.y - 3.0*C0.y)
    let D = C0

    return CGPointMake(((A.x*t+B.x)*t+C.x)*t+D.x, ((A.y*t+B.y)*t+C.y)*t+D.y)
}

// TODO: - future implementation
private func tangentAngleAtT(start: CGPoint, point1: CGPoint, point2: CGPoint, end: CGPoint, t: CGFloat) -> CGFloat {

    // bezier control points
    let C0 = start
    let C1 = point1
    let C2 = point2
    let C3 = end

    // The cubic polynomial coefficients such that Bez(t) = A*t^3 + B*t^2 + C*t + D
    let A = CGPointMake(C3.x - 3.0*C2.x + 3.0*C1.x - C0.x, C3.y - 3.0*C2.y + 3.0*C1.y - C0.y)
    let B = CGPointMake(3.0*C2.x - 6.0*C1.x + 3.0*C0.x, 3.0*C2.y - 6.0*C1.y + 3.0*C0.y)
    let C = CGPointMake(3.0*C1.x - 3.0*C0.x, 3.0*C1.y - 3.0*C0.y)

    return atan2(3.0*A.y*t*t + 2.0*B.y*t + C.y, 3.0*A.x*t*t + 2.0*B.x*t + C.x)
}

}
ライセンス: CC-BY-SA帰属
所属していません StackOverflow
scroll top