質問

一部のデータの非常に単純な難読化機能(暗号化や復号化など、必ずしも安全ではない)を探しています。ミッションクリティカルではありません。正直な人を正直に保つために何かが必要ですが、 ROT13 または Base64

.NET フレームワーク2.0に既に含まれているものが欲しいので、外部の依存関係について心配する必要はありません。

私は本当に公開/秘密鍵などをいじり回す必要はありません。暗号化についてはあまり知りませんが、書いたことはどれも価値がないということを十分に知っています...実際、私は恐らく数学を台無しにして、クラックを簡単にするでしょう。

役に立ちましたか?

解決

ここでのその他の回答は問題なく機能しますが、AESはより安全で最新の暗号化アルゴリズムです。これは、数年前に取得したAES暗号化を実行するために取得したクラスです。AES暗号化は、Webアプリケーションにより使いやすいように時間をかけて修正しました(たとえば、URLフレンドリーな文字列で動作するEncrypt / Decryptメソッドを構築しました)。また、バイト配列で機能するメソッドもあります。

注:キー(32バイト)およびベクター(16バイト)配列には異なる値を使用する必要があります!このコードをそのまま使用したと仮定するだけで、誰かにキーを理解させたくないでしょう。あなたがしなければならないのは、キー配列とベクター配列の数字の一部(< = 255でなければなりません)を変更することです(これを行うためにベクター配列に1つの無効な値を残しました...)。 https://www.random.org/bytes/ を使用して、新しいセットを簡単に生成できます。

使用方法は簡単です。クラスをインスタンス化してから、(通常)EncryptToString(string StringToEncrypt)およびDecryptString(string StringToDecrypt)をメソッドとして呼び出すだけです。このクラスを配置したら、これ以上簡単(または安全)にすることはできません。


using System;
using System.Data;
using System.Security.Cryptography;
using System.IO;


public class SimpleAES
{
    // Change these keys
    private byte[] Key = __Replace_Me__({ 123, 217, 19, 11, 24, 26, 85, 45, 114, 184, 27, 162, 37, 112, 222, 209, 241, 24, 175, 144, 173, 53, 196, 29, 24, 26, 17, 218, 131, 236, 53, 209 });

    // a hardcoded IV should not be used for production AES-CBC code
    // IVs should be unpredictable per ciphertext
    private byte[] Vector = __Replace_Me__({ 146, 64, 191, 111, 23, 3, 113, 119, 231, 121, 2521, 112, 79, 32, 114, 156 });


    private ICryptoTransform EncryptorTransform, DecryptorTransform;
    private System.Text.UTF8Encoding UTFEncoder;

    public SimpleAES()
    {
        //This is our encryption method
        RijndaelManaged rm = new RijndaelManaged();

        //Create an encryptor and a decryptor using our encryption method, key, and vector.
        EncryptorTransform = rm.CreateEncryptor(this.Key, this.Vector);
        DecryptorTransform = rm.CreateDecryptor(this.Key, this.Vector);

        //Used to translate bytes to text and vice versa
        UTFEncoder = new System.Text.UTF8Encoding();
    }

    /// -------------- Two Utility Methods (not used but may be useful) -----------
    /// Generates an encryption key.
    static public byte[] GenerateEncryptionKey()
    {
        //Generate a Key.
        RijndaelManaged rm = new RijndaelManaged();
        rm.GenerateKey();
        return rm.Key;
    }

    /// Generates a unique encryption vector
    static public byte[] GenerateEncryptionVector()
    {
        //Generate a Vector
        RijndaelManaged rm = new RijndaelManaged();
        rm.GenerateIV();
        return rm.IV;
    }


    /// ----------- The commonly used methods ------------------------------    
    /// Encrypt some text and return a string suitable for passing in a URL.
    public string EncryptToString(string TextValue)
    {
        return ByteArrToString(Encrypt(TextValue));
    }

    /// Encrypt some text and return an encrypted byte array.
    public byte[] Encrypt(string TextValue)
    {
        //Translates our text value into a byte array.
        Byte[] bytes = UTFEncoder.GetBytes(TextValue);

        //Used to stream the data in and out of the CryptoStream.
        MemoryStream memoryStream = new MemoryStream();

        /*
         * We will have to write the unencrypted bytes to the stream,
         * then read the encrypted result back from the stream.
         */
        #region Write the decrypted value to the encryption stream
        CryptoStream cs = new CryptoStream(memoryStream, EncryptorTransform, CryptoStreamMode.Write);
        cs.Write(bytes, 0, bytes.Length);
        cs.FlushFinalBlock();
        #endregion

        #region Read encrypted value back out of the stream
        memoryStream.Position = 0;
        byte[] encrypted = new byte[memoryStream.Length];
        memoryStream.Read(encrypted, 0, encrypted.Length);
        #endregion

        //Clean up.
        cs.Close();
        memoryStream.Close();

        return encrypted;
    }

    /// The other side: Decryption methods
    public string DecryptString(string EncryptedString)
    {
        return Decrypt(StrToByteArray(EncryptedString));
    }

    /// Decryption when working with byte arrays.    
    public string Decrypt(byte[] EncryptedValue)
    {
        #region Write the encrypted value to the decryption stream
        MemoryStream encryptedStream = new MemoryStream();
        CryptoStream decryptStream = new CryptoStream(encryptedStream, DecryptorTransform, CryptoStreamMode.Write);
        decryptStream.Write(EncryptedValue, 0, EncryptedValue.Length);
        decryptStream.FlushFinalBlock();
        #endregion

        #region Read the decrypted value from the stream.
        encryptedStream.Position = 0;
        Byte[] decryptedBytes = new Byte[encryptedStream.Length];
        encryptedStream.Read(decryptedBytes, 0, decryptedBytes.Length);
        encryptedStream.Close();
        #endregion
        return UTFEncoder.GetString(decryptedBytes);
    }

    /// Convert a string to a byte array.  NOTE: Normally we'd create a Byte Array from a string using an ASCII encoding (like so).
    //      System.Text.ASCIIEncoding encoding = new System.Text.ASCIIEncoding();
    //      return encoding.GetBytes(str);
    // However, this results in character values that cannot be passed in a URL.  So, instead, I just
    // lay out all of the byte values in a long string of numbers (three per - must pad numbers less than 100).
    public byte[] StrToByteArray(string str)
    {
        if (str.Length == 0)
            throw new Exception("Invalid string value in StrToByteArray");

        byte val;
        byte[] byteArr = new byte[str.Length / 3];
        int i = 0;
        int j = 0;
        do
        {
            val = byte.Parse(str.Substring(i, 3));
            byteArr[j++] = val;
            i += 3;
        }
        while (i < str.Length);
        return byteArr;
    }

    // Same comment as above.  Normally the conversion would use an ASCII encoding in the other direction:
    //      System.Text.ASCIIEncoding enc = new System.Text.ASCIIEncoding();
    //      return enc.GetString(byteArr);    
    public string ByteArrToString(byte[] byteArr)
    {
        byte val;
        string tempStr = "";
        for (int i = 0; i <= byteArr.GetUpperBound(0); i++)
        {
            val = byteArr[i];
            if (val < (byte)10)
                tempStr += "00" + val.ToString();
            else if (val < (byte)100)
                tempStr += "0" + val.ToString();
            else
                tempStr += val.ToString();
        }
        return tempStr;
    }
}

他のヒント

使用のためにSimpleAES(上記)をクリーンアップしました。複雑な暗号化/復号化メソッドを修正。バイトバッファ、文字列、およびURLフレンドリ文字列をエンコードするための分離されたメソッド。 URLエンコーディングに既存のライブラリを使用しました。

コードは小さく、シンプルで、高速で、出力はより簡潔です。たとえば、 johnsmith@gmail.com は以下を生成します:

SimpleAES: "096114178117140150104121138042115022037019164188092040214235183167012211175176167001017163166152"
SimplerAES: "YHKydYyWaHmKKnMWJROkvFwo1uu3pwzTr7CnARGjppg%3d"

コード:

public class SimplerAES
{
    private static byte[] key = __Replace_Me__({ 123, 217, 19, 11, 24, 26, 85, 45, 114, 184, 27, 162, 37, 112, 222, 209, 241, 24, 175, 144, 173, 53, 196, 29, 24, 26, 17, 218, 131, 236, 53, 209 });

    // a hardcoded IV should not be used for production AES-CBC code
    // IVs should be unpredictable per ciphertext
    private static byte[] vector = __Replace_Me_({ 146, 64, 191, 111, 23, 3, 113, 119, 231, 121, 221, 112, 79, 32, 114, 156 });

    private ICryptoTransform encryptor, decryptor;
    private UTF8Encoding encoder;

    public SimplerAES()
    {
        RijndaelManaged rm = new RijndaelManaged();
        encryptor = rm.CreateEncryptor(key, vector);
        decryptor = rm.CreateDecryptor(key, vector);
        encoder = new UTF8Encoding();
    }

    public string Encrypt(string unencrypted)
    {
        return Convert.ToBase64String(Encrypt(encoder.GetBytes(unencrypted)));
    }

    public string Decrypt(string encrypted)
    {
        return encoder.GetString(Decrypt(Convert.FromBase64String(encrypted)));
    }

    public byte[] Encrypt(byte[] buffer)
    {
        return Transform(buffer, encryptor);
    }

    public byte[] Decrypt(byte[] buffer)
    {
        return Transform(buffer, decryptor);
    }

    protected byte[] Transform(byte[] buffer, ICryptoTransform transform)
    {
        MemoryStream stream = new MemoryStream();
        using (CryptoStream cs = new CryptoStream(stream, transform, CryptoStreamMode.Write))
        {
            cs.Write(buffer, 0, buffer.Length);
        }
        return stream.ToArray();
    }
}

はい、 System.Security アセンブリを追加し、 System.Security.Cryptography 名前空間をインポートします。対称(DES)アルゴリズム暗号化の簡単な例を次に示します。

DESCryptoServiceProvider des = new DESCryptoServiceProvider();
des.GenerateKey();
byte[] key = des.Key; // save this!

ICryptoTransform encryptor = des.CreateEncryptor();
// encrypt
byte[] enc = encryptor.TransformFinalBlock(new byte[] { 1, 2, 3, 4 }, 0, 4);

ICryptoTransform decryptor = des.CreateDecryptor();

// decrypt
byte[] originalAgain = decryptor.TransformFinalBlock(enc, 0, enc.Length);
Debug.Assert(originalAgain[0] == 1);

暗号化された文字列内に渡されるランダムなIVを追加することでMudのSimplerAESを改善したと付け加えただけです。これにより、同じ文字列を暗号化すると毎回異なる出力が生成されるため、暗号化が向上します。

public class StringEncryption
{
    private readonly Random random;
    private readonly byte[] key;
    private readonly RijndaelManaged rm;
    private readonly UTF8Encoding encoder;

    public StringEncryption()
    {
        this.random = new Random();
        this.rm = new RijndaelManaged();
        this.encoder = new UTF8Encoding();
        this.key = Convert.FromBase64String("Your+Secret+Static+Encryption+Key+Goes+Here=");
    }

    public string Encrypt(string unencrypted)
    {
        var vector = new byte[16];
        this.random.NextBytes(vector);
        var cryptogram = vector.Concat(this.Encrypt(this.encoder.GetBytes(unencrypted), vector));
        return Convert.ToBase64String(cryptogram.ToArray());
    }

    public string Decrypt(string encrypted)
    {
        var cryptogram = Convert.FromBase64String(encrypted);
        if (cryptogram.Length < 17)
        {
            throw new ArgumentException("Not a valid encrypted string", "encrypted");
        }

        var vector = cryptogram.Take(16).ToArray();
        var buffer = cryptogram.Skip(16).ToArray();
        return this.encoder.GetString(this.Decrypt(buffer, vector));
    }

    private byte[] Encrypt(byte[] buffer, byte[] vector)
    {
        var encryptor = this.rm.CreateEncryptor(this.key, vector);
        return this.Transform(buffer, encryptor);
    }

    private byte[] Decrypt(byte[] buffer, byte[] vector)
    {
        var decryptor = this.rm.CreateDecryptor(this.key, vector);
        return this.Transform(buffer, decryptor);
    }

    private byte[] Transform(byte[] buffer, ICryptoTransform transform)
    {
        var stream = new MemoryStream();
        using (var cs = new CryptoStream(stream, transform, CryptoStreamMode.Write))
        {
            cs.Write(buffer, 0, buffer.Length);
        }

        return stream.ToArray();
    }
}

ボーナスユニットテスト

[Test]
public void EncryptDecrypt()
{
    // Arrange
    var subject = new StringEncryption();
    var originalString = "Testing123!£<*>quot;;

    // Act
    var encryptedString1 = subject.Encrypt(originalString);
    var encryptedString2 = subject.Encrypt(originalString);
    var decryptedString1 = subject.Decrypt(encryptedString1);
    var decryptedString2 = subject.Decrypt(encryptedString2);

    // Assert
    Assert.AreEqual(originalString, decryptedString1, "Decrypted string should match original string");
    Assert.AreEqual(originalString, decryptedString2, "Decrypted string should match original string");
    Assert.AreNotEqual(originalString, encryptedString1, "Encrypted string should not match original string");
    Assert.AreNotEqual(encryptedString1, encryptedString2, "String should never be encrypted the same twice");
}

マークのバリエーション(優れた)回答

  • 「使用」を追加
  • クラスをIDisposableにする
  • URLエンコーディングコードを削除して、例を単純にします。
  • 簡単なテストフィクスチャを追加して使用法を実証します

これが役立つことを願って

[TestFixture]
public class RijndaelHelperTests
{
    [Test]
    public void UseCase()
    {
        //These two values should not be hard coded in your code.
        byte[] key = {251, 9, 67, 117, 237, 158, 138, 150, 255, 97, 103, 128, 183, 65, 76, 161, 7, 79, 244, 225, 146, 180, 51, 123, 118, 167, 45, 10, 184, 181, 202, 190};
        byte[] vector = {214, 11, 221, 108, 210, 71, 14, 15, 151, 57, 241, 174, 177, 142, 115, 137};

        using (var rijndaelHelper = new RijndaelHelper(key, vector))
        {
            var encrypt = rijndaelHelper.Encrypt("StringToEncrypt");
            var decrypt = rijndaelHelper.Decrypt(encrypt);
            Assert.AreEqual("StringToEncrypt", decrypt);
        }
    }
}

public class RijndaelHelper : IDisposable
{
    Rijndael rijndael;
    UTF8Encoding encoding;

    public RijndaelHelper(byte[] key, byte[] vector)
    {
        encoding = new UTF8Encoding();
        rijndael = Rijndael.Create();
        rijndael.Key = key;
        rijndael.IV = vector;
    }

    public byte[] Encrypt(string valueToEncrypt)
    {
        var bytes = encoding.GetBytes(valueToEncrypt);
        using (var encryptor = rijndael.CreateEncryptor())
        using (var stream = new MemoryStream())
        using (var crypto = new CryptoStream(stream, encryptor, CryptoStreamMode.Write))
        {
            crypto.Write(bytes, 0, bytes.Length);
            crypto.FlushFinalBlock();
            stream.Position = 0;
            var encrypted = new byte[stream.Length];
            stream.Read(encrypted, 0, encrypted.Length);
            return encrypted;
        }
    }

    public string Decrypt(byte[] encryptedValue)
    {
        using (var decryptor = rijndael.CreateDecryptor())
        using (var stream = new MemoryStream())
        using (var crypto = new CryptoStream(stream, decryptor, CryptoStreamMode.Write))
        {
            crypto.Write(encryptedValue, 0, encryptedValue.Length);
            crypto.FlushFinalBlock();
            stream.Position = 0;
            var decryptedBytes = new Byte[stream.Length];
            stream.Read(decryptedBytes, 0, decryptedBytes.Length);
            return encoding.GetString(decryptedBytes);
        }
    }

    public void Dispose()
    {
        if (rijndael != null)
        {
            rijndael.Dispose();
        }
    }
}

[編集]数年後、私はこう言いました:これをしないでください! XOR暗号化の何が問題になっていますか。詳細については

非常にシンプルで簡単な双方向暗号化は、XOR暗号化です。

  1. パスワードを取得します。 mypass にしてみましょう。
  2. パスワードをバイナリに変換します(ASCIIに準拠)。パスワードは01101101 01111001 01110000 01100001 01110011 01110011になります。
  3. エンコードするメッセージを取得します。それもバイナリに変換します。
  4. メッセージの長さを見てください。メッセージの長さが400バイトの場合、パスワードを何度も繰り返して、400バイトの文字列に変換します。 01101101 01111001 01110000 01100001 01110011 01110011 01101101 01111001 01110000 01100001 01110011 01110011 01101101 01111001 01110000 01100001 01110011 01110011 ...(または mypassmypassmypass ...
  5. 長いパスワードを使用してメッセージをXORします。
  6. 結果を送信します。
  7. もう一度、同じパスワード( mypassmypassmypass ... )で暗号化されたメッセージをXORします。
  8. メッセージがあります!

私は、いくつかの回答とコメントから最高の結果を見つけました。

  • 暗号化テキスト(@jbtule)の前に付加されるランダムな初期化ベクトル
  • MemoryStream(@RenniePet)の代わりにTransformFinalBlock()を使用します
  • だれもコピー&amp;を避けるための事前入力キーはありません。災害の貼り付け
  • 適切な処理とパターンの使用

コード:

/// <summary>
/// Simple encryption/decryption using a random initialization vector
/// and prepending it to the crypto text.
/// </summary>
/// <remarks>Based on multiple answers in http://stackoverflow.com/questions/165808/simple-two-way-encryption-for-c-sharp </remarks>
public class SimpleAes : IDisposable
{
    /// <summary>
    ///     Initialization vector length in bytes.
    /// </summary>
    private const int IvBytes = 16;

    /// <summary>
    ///     Must be exactly 16, 24 or 32 bytes long.
    /// </summary>
    private static readonly byte[] Key = Convert.FromBase64String("FILL ME WITH 24 (2 pad chars), 32 OR 44 (1 pad char) RANDOM CHARS"); // Base64 has a blowup of four-thirds (33%)

    private readonly UTF8Encoding _encoder;
    private readonly ICryptoTransform _encryptor;
    private readonly RijndaelManaged _rijndael;

    public SimpleAes()
    {
        _rijndael = new RijndaelManaged {Key = Key};
        _rijndael.GenerateIV();
        _encryptor = _rijndael.CreateEncryptor();
        _encoder = new UTF8Encoding();
    }

    public string Decrypt(string encrypted)
    {
        return _encoder.GetString(Decrypt(Convert.FromBase64String(encrypted)));
    }

    public void Dispose()
    {
        _rijndael.Dispose();
        _encryptor.Dispose();
    }

    public string Encrypt(string unencrypted)
    {
        return Convert.ToBase64String(Encrypt(_encoder.GetBytes(unencrypted)));
    }

    private byte[] Decrypt(byte[] buffer)
    {
        // IV is prepended to cryptotext
        byte[] iv = buffer.Take(IvBytes).ToArray();
        using (ICryptoTransform decryptor = _rijndael.CreateDecryptor(_rijndael.Key, iv))
        {
            return decryptor.TransformFinalBlock(buffer, IvBytes, buffer.Length - IvBytes);
        }
    }

    private byte[] Encrypt(byte[] buffer)
    {
        // Prepend cryptotext with IV
        byte [] inputBuffer = _encryptor.TransformFinalBlock(buffer, 0, buffer.Length); 
        return _rijndael.IV.Concat(inputBuffer).ToArray();
    }
}

更新2015-07-18:@bpsilverと@EvereqのコメントによるプライベートEncrypt()メソッドの間違いを修正しました。 IVは誤って暗号化されましたが、Decrypt()が期待するとおりにクリアテキストで先頭に追加されます。

単純な暗号化だけが必要な場合(つまり、特定のクラッカーが破られる可能性があるが、ほとんどのカジュアルユーザーをロックアウトする場合)、同じ長さの2つのパスフレーズを選択するだけです:

deoxyribonucleicacid
while (x>0) { x-- };

およびデータの両方をxorします(必要に応じてパスフレーズをループします)(a)。例:

1111-2222-3333-4444-5555-6666-7777
deoxyribonucleicaciddeoxyribonucle
while (x>0) { x-- };while (x>0) { 

バイナリを検索する人はDNA文字列がキーであると考えるかもしれませんが、Cコードがバイナリで保存された初期化されていないメモリ以外のものであるとは考えにくいでしょう。


(a)これは非常に単純な暗号化であり、一部の定義では、暗号化とは見なされない場合があることに注意してください(暗号化の目的は<不正アクセスを単に難しくするのではなく、em>防止します)。もちろん、誰かがスチール製パイプでキーホルダーの上に立っている場合、最も強力な暗号化でさえ安全ではありません。

最初の文で述べたように、これは、カジュアルな攻撃者が先に進むことを十分に困難にする手段です。それはあなたの家で強盗を防ぐことに似ています-あなたはそれを難攻不落にする必要はありません、あなたは隣の家よりも妊娠しにくくする必要があります:-)

暗号化は簡単です。他の人が指摘したように、System.Security.Cryptography名前空間にはすべての作業を行うクラスがあります。自社開発のソリューションではなく、それらを使用します。

しかし、解読も簡単です。問題は暗号化アルゴリズムではなく、復号化に使用されるキーへのアクセスを保護することです。

次の解決策のいずれかを使用します。

  • CurrentUserスコープでProtectedDataクラスを使用するDPAPI。キーについて心配する必要がないので、これは簡単です。データは同じユーザーのみが復号化できるため、ユーザー間またはマシン間でデータを共有するのには適していません。

  • LocalMachineスコープでProtectedDataクラスを使用するDPAPI。に適しています単一の安全なサーバーで構成データを保護します。ただし、マシンにログインできる人はだれでも暗号化できるため、サーバーがセキュリティ保護されていなければ意味がありません。

  • 任意の対称アルゴリズム。使用するアルゴリズムを気にしない場合は、通常、静的SymmetricAlgorithm.Create()メソッドを使用します(実際、デフォルトではRijndaelです)。この場合、何らかの方法でキーを保護する必要があります。例えば。何らかの方法で難読化し、コード内で隠すことができます。ただし、コードを逆コンパイルできるほど賢い人なら誰でもキーを見つけることができることに注意してください。

上記のソリューションはどれも私のものほど簡単ではないので、ソリューションを投稿したかったのです。ご意見をお聞かせください:

 // This will return an encrypted string based on the unencrypted parameter
 public static string Encrypt(this string DecryptedValue)
 {
      HttpServerUtility.UrlTokenEncode(MachineKey.Protect(Encoding.UTF8.GetBytes(DecryptedValue.Trim())));
 }

 // This will return an unencrypted string based on the parameter
 public static string Decrypt(this string EncryptedValue)
 {
      Encoding.UTF8.GetString(MachineKey.Unprotect(HttpServerUtility.UrlTokenDecode(EncryptedValue)));
 }

オプション

これは、値を暗号化するために使用されるサーバーのMachineKeyが値を復号化するために使用されるものと同じであることを前提としています。必要に応じて、Web.configで静的MachineKeyを指定して、アプリケーションが実行場所に関係なくデータを復号化/暗号化できるようにします(開発サーバーと運用サーバーなど)。 これらの手順に従って静的マシンキーを生成できます。

System.Security.Cryptography でTripleDESCryptoServiceProviderを使用する:

public static class CryptoHelper
{
    private const string Key = "MyHashString";
    private static TripleDESCryptoServiceProvider GetCryproProvider()
    {
        var md5 = new MD5CryptoServiceProvider();
        var key = md5.ComputeHash(Encoding.UTF8.GetBytes(Key));
        return new TripleDESCryptoServiceProvider() { Key = key, Mode = CipherMode.ECB, Padding = PaddingMode.PKCS7 };
    }

    public static string Encrypt(string plainString)
    {
        var data = Encoding.UTF8.GetBytes(plainString);
        var tripleDes = GetCryproProvider();
        var transform = tripleDes.CreateEncryptor();
        var resultsByteArray = transform.TransformFinalBlock(data, 0, data.Length);
        return Convert.ToBase64String(resultsByteArray);
    }

    public static string Decrypt(string encryptedString)
    {
        var data = Convert.FromBase64String(encryptedString);
        var tripleDes = GetCryproProvider();
        var transform = tripleDes.CreateDecryptor();
        var resultsByteArray = transform.TransformFinalBlock(data, 0, data.Length);
        return Encoding.UTF8.GetString(resultsByteArray);
    }
}

名前空間 System.Security.Cryptography には、 TripleDESCryptoServiceProvider および RijndaelManaged クラスが含まれています

System.Security アセンブリへの参照を追加することを忘れないでください。

これを変更しました:

public string ByteArrToString(byte[] byteArr)
{
    byte val;
    string tempStr = "";
    for (int i = 0; i <= byteArr.GetUpperBound(0); i++)
    {
        val = byteArr[i];
        if (val < (byte)10)
            tempStr += "00" + val.ToString();
        else if (val < (byte)100)
            tempStr += "0" + val.ToString();
        else
            tempStr += val.ToString();
    }
    return tempStr;
}

これ:

    public string ByteArrToString(byte[] byteArr)
    {
        string temp = "";
        foreach (byte b in byteArr)
            temp += b.ToString().PadLeft(3, '0');
        return temp;
    }

組み込みの.Net暗号化ライブラリを使用して、この例ではAdvanced Encryption Standard(AES)を使用する方法を示します。

using System;
using System.IO;
using System.Security.Cryptography;

namespace Aes_Example
{
    class AesExample
    {
        public static void Main()
        {
            try
            {

                string original = "Here is some data to encrypt!";

                // Create a new instance of the Aes
                // class.  This generates a new key and initialization 
                // vector (IV).
                using (Aes myAes = Aes.Create())
                {

                    // Encrypt the string to an array of bytes.
                    byte[] encrypted = EncryptStringToBytes_Aes(original, myAes.Key, myAes.IV);

                    // Decrypt the bytes to a string.
                    string roundtrip = DecryptStringFromBytes_Aes(encrypted, myAes.Key, myAes.IV);

                    //Display the original data and the decrypted data.
                    Console.WriteLine("Original:   {0}", original);
                    Console.WriteLine("Round Trip: {0}", roundtrip);
                }

            }
            catch (Exception e)
            {
                Console.WriteLine("Error: {0}", e.Message);
            }
        }
        static byte[] EncryptStringToBytes_Aes(string plainText, byte[] Key,byte[] IV)
        {
            // Check arguments.
            if (plainText == null || plainText.Length <= 0)
                throw new ArgumentNullException("plainText");
            if (Key == null || Key.Length <= 0)
                throw new ArgumentNullException("Key");
            if (IV == null || IV.Length <= 0)
                throw new ArgumentNullException("Key");
            byte[] encrypted;
            // Create an Aes object
            // with the specified key and IV.
            using (Aes aesAlg = Aes.Create())
            {
                aesAlg.Key = Key;
                aesAlg.IV = IV;

                // Create a decrytor to perform the stream transform.
                ICryptoTransform encryptor = aesAlg.CreateEncryptor(aesAlg.Key, aesAlg.IV);

                // Create the streams used for encryption.
                using (MemoryStream msEncrypt = new MemoryStream())
                {
                    using (CryptoStream csEncrypt = new CryptoStream(msEncrypt, encryptor, CryptoStreamMode.Write))
                    {
                        using (StreamWriter swEncrypt = new StreamWriter(csEncrypt))
                        {

                            //Write all data to the stream.
                            swEncrypt.Write(plainText);
                        }
                        encrypted = msEncrypt.ToArray();
                    }
                }
            }


            // Return the encrypted bytes from the memory stream.
            return encrypted;

        }

        static string DecryptStringFromBytes_Aes(byte[] cipherText, byte[] Key, byte[] IV)
        {
            // Check arguments.
            if (cipherText == null || cipherText.Length <= 0)
                throw new ArgumentNullException("cipherText");
            if (Key == null || Key.Length <= 0)
                throw new ArgumentNullException("Key");
            if (IV == null || IV.Length <= 0)
                throw new ArgumentNullException("Key");

            // Declare the string used to hold
            // the decrypted text.
            string plaintext = null;

            // Create an Aes object
            // with the specified key and IV.
            using (Aes aesAlg = Aes.Create())
            {
                aesAlg.Key = Key;
                aesAlg.IV = IV;

                // Create a decrytor to perform the stream transform.
                ICryptoTransform decryptor = aesAlg.CreateDecryptor(aesAlg.Key, aesAlg.IV);

                // Create the streams used for decryption.
                using (MemoryStream msDecrypt = new MemoryStream(cipherText))
                {
                    using (CryptoStream csDecrypt = new CryptoStream(msDecrypt, decryptor, CryptoStreamMode.Read))
                    {
                        using (StreamReader srDecrypt = new StreamReader(csDecrypt))
                        {

                            // Read the decrypted bytes from the decrypting stream
                            // and place them in a string.
                            plaintext = srDecrypt.ReadToEnd();
                        }
                    }
                }

            }

            return plaintext;

        }
    }
}

あなたはそれがどれほど安全であるかは気にしないと言っていることは知っていますが、 DES AES を使用することもできます。これは最新の暗号化方式です。

Mark Brittingham の承認済みの回答を使用してきました。最近、暗号化されたテキストを別の組織に送信する必要があり、そこで問題が発生しました。 OPはこれらのオプションを必要としませんが、これは一般的な質問なので、修正を投稿しています( Encrypt および Decrypt 関数はこちら):

  1. すべてのメッセージの異なるIV-16進数を取得する前にIVバイトを暗号バイトに連結します。 もちろん、これは暗号文を受け取る当事者に伝える必要がある慣習です。
  2. 2つのコンストラクターを許可-1つはデフォルトの RijndaelManaged 値用で、もう1つはプロパティー値を指定できます(暗号化および復号化パーティ間の相互合意に基づいて)

クラスは次のとおりです(最後のテストサンプル):

/// <summary>
/// Based on https://msdn.microsoft.com/en-us/library/system.security.cryptography.rijndaelmanaged(v=vs.110).aspx
/// Uses UTF8 Encoding
///  http://security.stackexchange.com/a/90850
/// </summary>
public class AnotherAES : IDisposable
{
    private RijndaelManaged rijn;

    /// <summary>
    /// Initialize algo with key, block size, key size, padding mode and cipher mode to be known.
    /// </summary>
    /// <param name="key">ASCII key to be used for encryption or decryption</param>
    /// <param name="blockSize">block size to use for AES algorithm. 128, 192 or 256 bits</param>
    /// <param name="keySize">key length to use for AES algorithm. 128, 192, or 256 bits</param>
    /// <param name="paddingMode"></param>
    /// <param name="cipherMode"></param>
    public AnotherAES(string key, int blockSize, int keySize, PaddingMode paddingMode, CipherMode cipherMode)
    {
        rijn = new RijndaelManaged();
        rijn.Key = Encoding.UTF8.GetBytes(key);
        rijn.BlockSize = blockSize;
        rijn.KeySize = keySize;
        rijn.Padding = paddingMode;
        rijn.Mode = cipherMode;
    }

    /// <summary>
    /// Initialize algo just with key
    /// Defaults for RijndaelManaged class: 
    /// Block Size: 256 bits (32 bytes)
    /// Key Size: 128 bits (16 bytes)
    /// Padding Mode: PKCS7
    /// Cipher Mode: CBC
    /// </summary>
    /// <param name="key"></param>
    public AnotherAES(string key)
    {
        rijn = new RijndaelManaged();
        byte[] keyArray = Encoding.UTF8.GetBytes(key);
        rijn.Key = keyArray;
    }

    /// <summary>
    /// Based on https://msdn.microsoft.com/en-us/library/system.security.cryptography.rijndaelmanaged(v=vs.110).aspx
    /// Encrypt a string using RijndaelManaged encryptor.
    /// </summary>
    /// <param name="plainText">string to be encrypted</param>
    /// <param name="IV">initialization vector to be used by crypto algorithm</param>
    /// <returns></returns>
    public byte[] Encrypt(string plainText, byte[] IV)
    {
        if (rijn == null)
            throw new ArgumentNullException("Provider not initialized");

        // Check arguments.
        if (plainText == null || plainText.Length <= 0)
            throw new ArgumentNullException("plainText cannot be null or empty");
        if (IV == null || IV.Length <= 0)
            throw new ArgumentNullException("IV cannot be null or empty");
        byte[] encrypted;

        // Create a decrytor to perform the stream transform.
        using (ICryptoTransform encryptor = rijn.CreateEncryptor(rijn.Key, IV))
        {
            // Create the streams used for encryption.
            using (MemoryStream msEncrypt = new MemoryStream())
            {
                using (CryptoStream csEncrypt = new CryptoStream(msEncrypt, encryptor, CryptoStreamMode.Write))
                {
                    using (StreamWriter swEncrypt = new StreamWriter(csEncrypt))
                    {
                        //Write all data to the stream.
                        swEncrypt.Write(plainText);
                    }
                    encrypted = msEncrypt.ToArray();
                }
            }
        }
        // Return the encrypted bytes from the memory stream.
        return encrypted;
    }//end EncryptStringToBytes

    /// <summary>
    /// Based on https://msdn.microsoft.com/en-us/library/system.security.cryptography.rijndaelmanaged(v=vs.110).aspx
    /// </summary>
    /// <param name="cipherText">bytes to be decrypted back to plaintext</param>
    /// <param name="IV">initialization vector used to encrypt the bytes</param>
    /// <returns></returns>
    public string Decrypt(byte[] cipherText, byte[] IV)
    {
        if (rijn == null)
            throw new ArgumentNullException("Provider not initialized");

        // Check arguments.
        if (cipherText == null || cipherText.Length <= 0)
            throw new ArgumentNullException("cipherText cannot be null or empty");
        if (IV == null || IV.Length <= 0)
            throw new ArgumentNullException("IV cannot be null or empty");

        // Declare the string used to hold the decrypted text.
        string plaintext = null;

        // Create a decrytor to perform the stream transform.
        using (ICryptoTransform decryptor = rijn.CreateDecryptor(rijn.Key, IV))
        {
            // Create the streams used for decryption.
            using (MemoryStream msDecrypt = new MemoryStream(cipherText))
            {
                using (CryptoStream csDecrypt = new CryptoStream(msDecrypt, decryptor, CryptoStreamMode.Read))
                {
                    using (StreamReader srDecrypt = new StreamReader(csDecrypt))
                    {
                        // Read the decrypted bytes from the decrypting stream and place them in a string.
                        plaintext = srDecrypt.ReadToEnd();
                    }
                }
            }
        }

        return plaintext;
    }//end DecryptStringFromBytes

    /// <summary>
    /// Generates a unique encryption vector using RijndaelManaged.GenerateIV() method
    /// </summary>
    /// <returns></returns>
    public byte[] GenerateEncryptionVector()
    {
        if (rijn == null)
            throw new ArgumentNullException("Provider not initialized");

        //Generate a Vector
        rijn.GenerateIV();
        return rijn.IV;
    }//end GenerateEncryptionVector


    /// <summary>
    /// Based on https://stackoverflow.com/a/1344255
    /// Generate a unique string given number of bytes required.
    /// This string can be used as IV. IV byte size should be equal to cipher-block byte size. 
    /// Allows seeing IV in plaintext so it can be passed along a url or some message.
    /// </summary>
    /// <param name="numBytes"></param>
    /// <returns></returns>
    public static string GetUniqueString(int numBytes)
    {
        char[] chars = new char[62];
        chars = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890".ToCharArray();
        byte[] data = new byte[1];
        using (RNGCryptoServiceProvider crypto = new RNGCryptoServiceProvider())
        {
            data = new byte[numBytes];
            crypto.GetBytes(data);
        }
        StringBuilder result = new StringBuilder(numBytes);
        foreach (byte b in data)
        {
            result.Append(chars[b % (chars.Length)]);
        }
        return result.ToString();
    }//end GetUniqueKey()

    /// <summary>
    /// Converts a string to byte array. Useful when converting back hex string which was originally formed from bytes.
    /// </summary>
    /// <param name="hex"></param>
    /// <returns></returns>
    public static byte[] StringToByteArray(String hex)
    {
        int NumberChars = hex.Length;
        byte[] bytes = new byte[NumberChars / 2];
        for (int i = 0; i < NumberChars; i += 2)
            bytes[i / 2] = Convert.ToByte(hex.Substring(i, 2), 16);
        return bytes;
    }//end StringToByteArray

    /// <summary>
    /// Dispose RijndaelManaged object initialized in the constructor
    /// </summary>
    public void Dispose()
    {
        if (rijn != null)
            rijn.Dispose();
    }//end Dispose()
}//end class

and ..

テストサンプルは次のとおりです。

class Program
{
    string key;
    static void Main(string[] args)
    {
        Program p = new Program();

        //get 16 byte key (just demo - typically you will have a predetermined key)
        p.key = AnotherAES.GetUniqueString(16);

        string plainText = "Hello World!";

        //encrypt
        string hex = p.Encrypt(plainText);

        //decrypt
        string roundTrip = p.Decrypt(hex);

        Console.WriteLine("Round Trip: {0}", roundTrip);
    }

    string Encrypt(string plainText)
    {
        Console.WriteLine("\nSending (encrypt side)...");
        Console.WriteLine("Plain Text: {0}", plainText);
        Console.WriteLine("Key: {0}", key);
        string hex = string.Empty;
        string ivString = AnotherAES.GetUniqueString(16);
        Console.WriteLine("IV: {0}", ivString);
        using (AnotherAES aes = new AnotherAES(key))
        {
            //encrypting side
            byte[] IV = Encoding.UTF8.GetBytes(ivString);

            //get encrypted bytes (IV bytes prepended to cipher bytes)
            byte[] encryptedBytes = aes.Encrypt(plainText, IV);
            byte[] encryptedBytesWithIV = IV.Concat(encryptedBytes).ToArray();

            //get hex string to send with url
            //this hex has both IV and ciphertext
            hex = BitConverter.ToString(encryptedBytesWithIV).Replace("-", "");
            Console.WriteLine("sending hex: {0}", hex);
        }

        return hex;
    }

    string Decrypt(string hex)
    {
        Console.WriteLine("\nReceiving (decrypt side)...");
        Console.WriteLine("received hex: {0}", hex);
        string roundTrip = string.Empty;
        Console.WriteLine("Key " + key);
        using (AnotherAES aes = new AnotherAES(key))
        {
            //get bytes from url
            byte[] encryptedBytesWithIV = AnotherAES.StringToByteArray(hex);

            byte[] IV = encryptedBytesWithIV.Take(16).ToArray();

            Console.WriteLine("IV: {0}", System.Text.Encoding.Default.GetString(IV));

            byte[] cipher = encryptedBytesWithIV.Skip(16).ToArray();

            roundTrip = aes.Decrypt(cipher, IV);
        }
        return roundTrip;
    }
}

ここに画像の説明を入力してください

これは世界で最もシンプルなものだと思います!

string encrypted = "Text".Aggregate("", (c, a) => c + (char) (a + 2));

テスト

 Console.WriteLine(("Hello").Aggregate("", (c, a) => c + (char) (a + 1)));
            //Output is Ifmmp
 Console.WriteLine(("Ifmmp").Aggregate("", (c, a) => c + (char)(a - 1)));
            //Output is Hello
ライセンス: CC-BY-SA帰属
所属していません StackOverflow
scroll top