Why is first-order logic (without arithmetic) VALIDITY only recursively enumerable, and not recursive?

cs.stackexchange https://cs.stackexchange.com/questions/60855

문제

Papadimitriou's "Computational Complexity" states that VALIDITY, the problem of deciding whether a first-order logic (without arithmetic) formula is valid, is recursively enumerable. This follows from the completeness and soundness theorems, which equate VALIDITY and THEOREMHOOD, the latter being the problem of finding a proof for a formula, which had previously been shown to be recursively enumerable.

However, I am not seeing why VALIDITY is not recursive as well, because given a formula $\phi$, one could run two Turing Machines for THEOREMHOOD, one on $\phi$ and the other on $\neg \phi$, concurrently. Since at least one of them is valid, it is always possible to decide whether $\phi$ is valid, or not valid. What am I missing?

Note: this question refers to first-order logic without arithmetic, so Gödel's Incompleteness Theorem does not have a bearing here.

올바른 솔루션이 없습니다

라이센스 : CC-BY-SA ~와 함께 속성
제휴하지 않습니다 cs.stackexchange
scroll top