Pergunta

Eu estou procurando uma solução para arquivos de especificação ASN.1 analisar e gerar um decodificador daqueles.

Idealmente, eu gostaria de trabalhar com módulos Python, mas se nada está disponível eu iria usar bibliotecas C / C ++ e interagir los com Python com a infinidade de soluções lá fora.

No passado eu tenho usado pyasn1 e construir tudo à mão, mas que se tornou demasiado unwieldly.

Eu também olhou superficialmente libtasn1 e asn1c. O primeiro teve problemas analisar mesmo o mais simples de arquivos. O segundo tem uma boa analisador mas gerar o código C para descodificar parece demasiado complexo; a solução funcionou bem com especificações simples, mas engasgou com as complexas.

Todas as outras alternativas boas I pode ter negligenciado?

Foi útil?

Solução

Nunca tentou-los, mas:

Ambos parece estar a fazer o que você quer (C, não Python).

Outras dicas

Eu escrevi tal analisador de alguns anos atrás. Ele gera classes Python para a biblioteca pyasn1. I usado em no doc Ericsson para fazer analisador para suas CDRs.

Vou tentar postar o código aqui agora.

import sys
from pyparsing import *

OpenBracket = Regex("[({]").suppress()
CloseBracket = Regex("[)}]").suppress()

def Enclose(val):
  return OpenBracket + val + CloseBracket

def SetDefType(typekw):
  def f(a, b, c):
    c["defType"] = typekw
  return f

def NoDashes(a, b, c):
  return c[0].replace("-", "_")

def DefineTypeDef(typekw, typename, typedef):
  return typename.addParseAction(SetDefType(typekw)).setResultsName("definitionType") - \
    Optional(Enclose(typedef).setResultsName("definition"))



SizeConstraintBodyOpt = Word(nums).setResultsName("minSize") - \
  Optional(Suppress(Literal("..")) - Word(nums + "n").setResultsName("maxSize"))

SizeConstraint = Group(Keyword("SIZE").suppress() - Enclose(SizeConstraintBodyOpt)).setResultsName("sizeConstraint")

Constraints = Group(delimitedList(SizeConstraint)).setResultsName("constraints")

DefinitionBody = Forward()

TagPrefix = Enclose(Word(nums).setResultsName("tagID")) - Keyword("IMPLICIT").setResultsName("tagFormat")

OptionalSuffix = Optional(Keyword("OPTIONAL").setResultsName("isOptional"))
JunkPrefix = Optional("--F--").suppress()
AName = Word(alphanums + "-").setParseAction(NoDashes).setResultsName("name")

SingleElement = Group(JunkPrefix - AName - Optional(TagPrefix) - DefinitionBody.setResultsName("typedef") - OptionalSuffix)

NamedTypes = Dict(delimitedList(SingleElement)).setResultsName("namedTypes")

SetBody = DefineTypeDef("Set", Keyword("SET"), NamedTypes)
SequenceBody = DefineTypeDef("Sequence", Keyword("SEQUENCE"), NamedTypes)
ChoiceBody = DefineTypeDef("Choice", Keyword("CHOICE"), NamedTypes)

SetOfBody = (Keyword("SET") + Optional(SizeConstraint) + Keyword("OF")).setParseAction(SetDefType("SetOf")) + Group(DefinitionBody).setResultsName("typedef")
SequenceOfBody = (Keyword("SEQUENCE") + Optional(SizeConstraint) + Keyword("OF")).setParseAction(SetDefType("SequenceOf")) + Group(DefinitionBody).setResultsName("typedef")

CustomBody = DefineTypeDef("constructed", Word(alphanums + "-").setParseAction(NoDashes), Constraints)
NullBody = DefineTypeDef("Null", Keyword("NULL"), Constraints)

OctetStringBody = DefineTypeDef("OctetString", Regex("OCTET STRING"), Constraints)
IA5StringBody = DefineTypeDef("IA5String", Keyword("IA5STRING"), Constraints)

EnumElement = Group(Word(printables).setResultsName("name") - Enclose(Word(nums).setResultsName("value")))
NamedValues = Dict(delimitedList(EnumElement)).setResultsName("namedValues")
EnumBody = DefineTypeDef("Enum", Keyword("ENUMERATED"), NamedValues)

BitStringBody = DefineTypeDef("BitString", Keyword("BIT") + Keyword("STRING"), NamedValues)

DefinitionBody << (OctetStringBody | SetOfBody | SetBody | ChoiceBody | SequenceOfBody | SequenceBody | EnumBody | BitStringBody | IA5StringBody | NullBody | CustomBody)

Definition = AName - Literal("::=").suppress() - Optional(TagPrefix) - DefinitionBody

Definitions = Dict(ZeroOrMore(Group(Definition)))

pf = Definitions.parseFile(sys.argv[1])

TypeDeps = {}
TypeDefs = {}

def SizeConstraintHelper(size):
  s2 = s1 = size.get("minSize")
  s2 = size.get("maxSize", s2)
  try:
    return("constraint.ValueSizeConstraint(%s, %s)" % (int(s1), int(s2)))
  except ValueError:
    pass

ConstraintMap = {
  'sizeConstraint' : SizeConstraintHelper,
}

def ConstraintHelper(c):
  result = []
  for key, value in c.items():
    r = ConstraintMap[key](value)
    if r:
      result.append(r)
  return result

def GenerateConstraints(c, ancestor, element, level=1):
  result = ConstraintHelper(c)
  if result:
    return [ "subtypeSpec = %s" % " + ".join(["%s.subtypeSpec" % ancestor] + result) ]
  return []

def GenerateNamedValues(definitions, ancestor, element, level=1):
  result = [ "namedValues = namedval.NamedValues(" ]
  for kw in definitions:
    result.append("  ('%s', %s)," % (kw["name"], kw["value"]))
  result.append(")")
  return result

OptMap = {
  False: "",
  True: "Optional",
}

def GenerateNamedTypesList(definitions, element, level=1):
  result = []
  for val in definitions:
    name = val["name"]
    typename = None

    isOptional = bool(val.get("isOptional"))

    subtype = []
    constraints = val.get("constraints")
    if constraints:
      cg = ConstraintHelper(constraints)
      subtype.append("subtypeSpec=%s" % " + ".join(cg))
    tagId = val.get("tagID")
    if tagId:
      subtype.append("implicitTag=tag.Tag(tag.tagClassContext, tag.tagFormatConstructed, %s)" % tagId)

    if subtype:
      subtype = ".subtype(%s)" % ", ".join(subtype)
    else:
      subtype = ""

    cbody = []
    if val["defType"] == "constructed":
      typename = val["typedef"]
      element["_d"].append(typename)
    elif val["defType"] == "Null":
      typename = "univ.Null"
    elif val["defType"] == "SequenceOf":
      typename = "univ.SequenceOf"
      print val.items()
      cbody = [ "  componentType=%s()" % val["typedef"]["definitionType"] ]
    elif val["defType"] == "Choice":
      typename = "univ.Choice"
      indef = val.get("definition")
      if indef:
        cbody = [ "  %s" % x for x in GenerateClassDefinition(indef, name, typename, element) ]
    construct = [ "namedtype.%sNamedType('%s', %s(" % (OptMap[isOptional], name, typename), ")%s)," % subtype ]
    if not cbody:
      result.append("%s%s%s" % ("  " * level, construct[0], construct[1]))
    else:
      result.append("  %s" % construct[0])
      result.extend(cbody)
      result.append("  %s" % construct[1])
  return result



def GenerateNamedTypes(definitions, ancestor, element, level=1):
  result = [ "componentType = namedtype.NamedTypes(" ]
  result.extend(GenerateNamedTypesList(definitions, element))
  result.append(")")
  return result


defmap = {
  'constraints' : GenerateConstraints,
  'namedValues' : GenerateNamedValues,
  'namedTypes' : GenerateNamedTypes,
}

def GenerateClassDefinition(definition, name, ancestor, element, level=1):
  result = []
  for defkey, defval in definition.items():
    if defval:
      fn = defmap.get(defkey)
      if fn:
        result.extend(fn(defval, ancestor, element, level))
  return ["  %s" % x for x in result]

def GenerateClass(element, ancestor):
  name = element["name"]

  top = "class %s(%s):" % (name, ancestor)
  definition = element.get("definition")
  body = []
  if definition:
    body = GenerateClassDefinition(definition, name, ancestor, element)
  else:
    typedef = element.get("typedef")
    if typedef:
      element["_d"].append(typedef["definitionType"])
      body.append("  componentType = %s()" % typedef["definitionType"])
      szc = element.get('sizeConstraint')
      if szc:
        body.extend(GenerateConstraints({ 'sizeConstraint' : szc }, ancestor, element))

  if not body:
    body.append("  pass")

  TypeDeps[name] = list(frozenset(element["_d"]))

  return "\n".join([top] + body)

StaticMap = {
  "Null" : "univ.Null",
  "Enum" : "univ.Enumerated",
  "OctetString" : "univ.OctetString",
  "IA5String" : "char.IA5String",
  "Set" : "univ.Set",
  "Sequence" : "univ.Sequence",
  "Choice" : "univ.Choice",
  "SetOf" : "univ.SetOf",
  "BitString" : "univ.BitString",
  "SequenceOf" : "univ.SequenceOf",
}

def StaticConstructor(x):
  x["_d"] = []
  if x["defType"] == "constructed":
    dt = x["definitionType"]
    x["_d"].append(dt)
  else:
    dt = StaticMap[x["defType"]]
  return GenerateClass(x, dt)


for element in pf:
  TypeDefs[element["name"]] = StaticConstructor(element)

while TypeDefs:
  ready = [ k for k, v in TypeDeps.items() if len(v) == 0 ]
  if not ready:
    x = list()
    for a in TypeDeps.values():
      x.extend(a)
    x = frozenset(x) - frozenset(TypeDeps.keys())

    print TypeDefs

    raise ValueError, sorted(x)

  for t in ready:
    for v in TypeDeps.values():
      try:
        v.remove(t)
      except ValueError:
        pass

    del TypeDeps[t]
    print TypeDefs[t]
    print
    print

    del TypeDefs[t]

Isso vai demorar um arquivo com sintaxe semelhante a esta:

CarrierInfo ::= OCTET STRING (SIZE(2..3))
ChargeAreaCode ::= OCTET STRING (SIZE(3))
ChargeInformation ::= OCTET STRING (SIZE(2..33))
ChargedParty ::= ENUMERATED

 (chargingOfCallingSubscriber  (0),
  chargingOfCalledSubscriber   (1),
  noCharging                   (2))
ChargingOrigin ::= OCTET STRING (SIZE(1))
Counter ::= OCTET STRING (SIZE(1..4))
Date ::= OCTET STRING (SIZE(3..4))

Você vai precisar adicionar esta linha na parte superior do arquivo gerado:

from pyasn1.type import univ, namedtype, namedval, constraint, tag, char

E o nome defs.py. resultado Então, me acompanha um bando de prettyprinters aos defs (se você não tem apenas ignorá-lo)

import defs, parsers

def rplPrettyOut(self, value):
  return repr(self.decval(value))

for name in dir(parsers):
  if (not name.startswith("_")) and hasattr(defs, name):
    target = getattr(defs, name)
    target.prettyOut = rplPrettyOut
    target.decval = getattr(parsers, name)

Então, é para baixo:

  def ParseBlock(self, block):
    while block and block[0] != '\x00':
      result, block = pyasn1.codec.ber.decoder.decode(block, asn1Spec=parserimp.defs.CallDataRecord())
      yield result

Se você ainda estiver interessado eu vou colocar a algum lugar código. Na verdade, eu vou colocá-lo em algum lugar, em qualquer caso -. Mas se você estiver interessado apenas deixe-me saber e eu vou apontá-lo lá

Há um ANTLR ASN.1 gramática ; usando ANTLR, você deve ser capaz de fazer um analisador ASN.1 fora dele. Gerando código para pyasn1 é deixada como um exercício para o cartaz: -)

Eu tenho experiência com pyasn1 e é o suficiente para analisar gramáticas bastante complexas. A gramática é expressa com estrutura de python, por isso não há necessidade de executar gerador de código.

Eu sou o autor de LEPL, um analisador escrito em Python, eo que você quer fazer é uma das coisas em minha lista "TODO".

Eu não vou estar fazendo isso em breve, mas você pode considerar o uso LEPL para construir a sua solução porque:

1 - é uma solução Python puro (que torna a vida mais simples)

2 - já pode analisar dados binários, bem como texto, assim você só precisa usar uma única ferramenta - o mesmo analisador que você usaria para analisar a especificação ASN1, então, ser usado para analisar os dados binários

As principais desvantagens são que:

1 - É um relativamente novo pacote, por isso pode ser buggier do que alguns, e a comunidade de suporte não é tão grande

2 - ele está restrito a Python 2.6 e para cima (e o analisador binário só funciona com Python 3 e para cima)

.

Para obter mais informações, consulte http://www.acooke.org/lepl - em particular, para análise binária consulte a secção relevante do manual (não pode ligar diretamente para que, como Stack Overflow parece pensar que eu estou spam)

Andrew

PS A principal razão isso não é algo que eu já começaram é que as especificações ASN 1 não estão disponíveis gratuitamente, tanto quanto eu sei. Se você tem acesso a eles, e não é ilegal (!), Uma cópia seria muito apreciada (infelizmente Atualmente, estou trabalhando em outro projeto, então isso ainda levaria tempo para implementar, mas iria me ajudar a conseguir este trabalho mais cedo ...).

Eu tenho feito um trabalho semelhante usando asn1c e construir em torno dele uma extensão de pirex. A estrutura enrolada é descrito em 3GPP TS 32,401 .

Com Pyrex você pode escrever um wrapper grossa o suficiente para converter entre tipos de dados Python nativas e as representações ASN.1 corretas (invólucro geradores, tais SWIG, tendem a não realizar operações complexas do tipo). O wrapper que eu escrevi também acompanhou a propriedade das estruturas de dados subjacentes C (por exemplo, acessando a uma sub-estrutura, um objeto Python foi devolvido, mas não havia nenhuma cópia dos dados subjacentes, apenas a partilha de referência).

O invólucro foi finalmente escrito em uma espécie de forma semi-automática, mas porque isso tem sido meu único trabalho com ASN.1 eu nunca fiz a etapa de automatizar completamente a geração de código.

Você pode tentar usar outros wrappers Python-C e realizar uma conversão completamente automático: o trabalho seria menos, mas depois você se moveria complexidade (e operações propensas a erros repetitivos) para os usuários estrutura: por esta razão eu preferi a forma Pyrex. asn1c foi definitivamente uma boa escolha.

Eu recentemente criou o pacote Python chamado asn1tools que compila uma especificação ASN.1 para Python objetos, que pode ser usado para mensagens de codificação e decodificação.

>>> import asn1tools
>>> foo = asn1tools.compile_file('tests/files/foo.asn')
>>> encoded = foo.encode('Question', {'id': 1, 'question': 'Is 1+1=3?'})
>>> encoded
bytearray(b'0\x0e\x02\x01\x01\x16\x09Is 1+1=3?')
>>> foo.decode('Question', encoded)
{'id': 1, 'question': 'Is 1+1=3?'}
Licenciado em: CC-BY-SA com atribuição
Não afiliado a StackOverflow
scroll top