Pergunta

Estou tentando resolver um sistema de equações lineares simples usando o LaPack. Eu uso o método DBSVG que é otimizado para matrizes em faixas. Eu observei um comportamento realmente estranho. Quando eu preencho o Matrix da seguinte maneira:

for(i=0; i<DIM;i++) AB[0][i] = -1;
for(i=0; i<DIM;i++) AB[1][i] = 2;
for(i=0; i<DIM;i++) AB[2][i] = -1;
for(i=0; i<3; i++)
    for(j=0;j<DIM;j++) {
        AT[i*DIM+j]=AB[i][j];
    }

E ligue:

dgbsv_(&N, &KL, &KU, &NRHS, AT, &LDAB, myIpiv, x, &LDB, &INFO);

Funciona perfeitamente. No entanto, quando eu faço desta maneira:

for(i=0; i<DIM;i++) AT[i] = -1;
for(i=0; i<DIM;i++) AT[DIM+i] = 2;
for(i=0; i<DIM;i++) AT[2*DIM+i] = -1;

Isso resulta com um vetor cheio de NAN. Aqui estão as declarações:

double AB[3][DIM], AT[3*DIM];
double x[DIM];
int myIpiv[DIM];
int N=DIM, KL=1, KU=1, NRHS=1, LDAB=DIM, LDB=DIM, INFO;

Alguma ideia?

Foi útil?

Solução

Você não está colocando as entradas no armazenamento da banda corretamente; Estava funcionando antes por um feliz acidente. o DOCs de lapack dizer:

    On entry, the matrix A in band storage, in rows KL+1 to
    2*KL+KU+1; rows 1 to KL of the array need not be set.
    The j-th column of A is stored in the j-th column of the
    array AB as follows:
    AB(KL+KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+KL)
    On exit, details of the factorization: U is stored as an
    upper triangular band matrix with KL+KU superdiagonals in
    rows 1 to KL+KU+1, and the multipliers used during the
    factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
    See below for further details.

Portanto, se você deseja uma matriz tridiagonal com 2 na diagonal e -1 acima e abaixo, o layout deve ser:

 *  *  *  *  *  *  *  ...  *  *  *  *
 * -1 -1 -1 -1 -1 -1  ... -1 -1 -1 -1
 2  2  2  2  2  2  2  ...  2  2  2  2
-1 -1 -1 -1 -1 -1 -1  ... -1 -1 -1  *

O LDAB deve ser 4 neste caso. Lembre-se de que o Lapack usa um layout de coluna-major; portanto, a matriz real deve ser assim na memória:

{ *, *, 2.0, -1.0, *, -1.0, 2.0, -1.0, *, -1.0, 2.0, -1.0, ... }

dgbsv estava dando resultados diferentes para as duas matrizes idênticas, porque estava lendo as extremidades das matrizes que você havia apresentado.

Outras dicas

Esse é o código exato que você usou ou apenas um exemplo? Eu executei esse código aqui (basta cortar e colar suas postagens, com uma mudança de AT para AT2 no segundo loop:

const int DIM=10;
double AB[DIM][DIM], AT[3*DIM], AT2[3*DIM];
int i,j;

for(i=0; i<DIM;i++) AB[0][i] = -1;
for(i=0; i<DIM;i++) AB[1][i] = 2;
for(i=0; i<DIM;i++) AB[2][i] = -1;
for(i=0; i<3; i++)
        for(j=0;j<DIM;j++) {
                AT[i*DIM+j]=AB[i][j];
        }
printf("AT:");
for (i=0;i<3*DIM;++i) printf("%lf ",AT[i]);
printf("\n\n");
for(i=0; i<DIM;i++) AT2[i] = -1;
for(i=0; i<DIM;i++) AT2[DIM+i] = 2;
for(i=0; i<DIM;i++) AT2[2*DIM+i] = -1;
printf("AT2:");
for (i=0;i<3*DIM;++i) printf("%lf ",AT2[i]);
printf("\n\n");
printf("Diff:");
for (i=0;i<3*DIM;++i) printf("%lf ",AT[i]-AT2[i]);
printf("\n\n");

e obteve esta saída

AT:-1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.0000 00 -1.000000 -1.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.0 00000 2.000000 2.000000 2.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.0000 00 -1.000000 -1.000000 - 1.000000 -1.000000 -1.000000

AT2:-1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000 000 -1.000000 -1.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2. 000000 2.000000 2.000000 2.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000 000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000

Diff:0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0. 000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0 .000000 0.000000 0.000000 0.000000

Aparentemente, em e at2 são os mesmos. O que eu esperaria.

Licenciado em: CC-BY-SA com atribuição
Não afiliado a StackOverflow
scroll top