Pergunta

Dado um grande N, preciso percorrer todos phi (k) de modo a que 1

  • tempo complexidade deve ser O(N logN)
  • memória de complexidade deve ser sub O(N) (uma vez que os valores de N será de cerca de 10 12 )

É possível? Se sim, como?

Foi útil?

Solução

Isto pode ser feito com a complexidade Memória O (Sqrt (N)) e complexidade de CPU O (N * (log (N))) com uma peneira com janelas optimizado de Eratóstenes, como implementado no exemplo de código abaixo.

Como nenhuma língua foi especificado e como eu não sei Python, tenho implementou em VB.net, no entanto eu posso convertê-lo em C # se você precisa disso.

Imports System.Math

Public Class TotientSerialCalculator
    'Implements an extremely efficient Serial Totient(phi) calculator   '
    '  This implements an optimized windowed Sieve of Eratosthenes.  The'
    ' window size is set at Sqrt(N) both to optimize collecting and     '
    ' applying all of the Primes below Sqrt(N), and to minimize         '
    ' window-turning overhead.                                          '
    '                                                                   '
    ' CPU complexity is O( N * Log(Log(N)) ), which is virtually linear.'
    '                                                                   '
    ' MEM Complexity is O( Sqrt(N) ).                                   '
    '                                                                   '
    ' This is probalby the ideal combination, as any attempt to further '
    'reduce memory will almost certainly result in disproportionate increases'
    'in CPU complexity, and vice-versa.                                 '

    Structure NumberFactors
        Dim UnFactored As Long  'the part of the number that still needs to be factored'
        Dim Phi As Long 'the totient value progressively calculated'
        '               (equals total numbers less than N that are CoPrime to N)'
        'MEM = 8 bytes each'
    End Structure

    Private ReportInterval As Long
    Private PrevLast As Long     'the last value in the previous window'
    Private FirstValue As Long   'the first value in this windows range'
    Private WindowSize As Long
    Private LastValue As Long    'the last value in this windows range'
    Private NextFirst As Long    'the first value in the next window'

    'Array that stores all of the NumberFactors in the current window.'
    ' this is the primary memory consumption for the class and it'
    ' is 16 * Sqrt(N) Bytes, which is O(Sqrt(N)).'
    Public Numbers() As NumberFactors
    ' For N=10^12 (1 trilion), this will be 16MB, which should be bearable anywhere.'
    '(note that the Primes() array is a secondary memory consumer'
    '  at O(pi(Sqrt(N)), which will be within 10x of O(Sqrt(N)))'

    Public Event EmitTotientPair(ByVal k As Long, ByVal Phi As Long)

    '===== The Routine To Call: ========================'
    Public Sub EmitTotientPairsToN(ByVal N As Long)
        'Routine to Emit Totient pairs {k, Phi(k)} for k = 1 to N'
        '   2009-07-14, RBarryYoung, Created.'
        Dim i As Long
        Dim k As Long   'the current number being factored'
        Dim p As Long   'the current prime factor'

        'Establish the Window frame:'
        '   note: WindowSize is the critical value that controls both memory'
        '    usage and CPU consumption and must be SQRT(N) for it to work optimally.'
        WindowSize = Ceiling(Sqrt(CDbl(N)))
        ReDim Numbers(0 To WindowSize - 1)

        'Initialize the first window:'
        MapWindow(1)
        Dim IsFirstWindow As Boolean = True

        'adjust this to control how often results are show'
        ReportInterval = N / 100

        'Allocate the primes array to hold the primes list:'
        '  Only primes <= SQRT(N) are needed for factoring'
        '  PiMax(X) is a Max estimate of the number of primes <= X'
        Dim Primes() As Long, PrimeIndex As Long, NextPrime As Long
        'init the primes list and its pointers'
        ReDim Primes(0 To PiMax(WindowSize) - 1)
        Primes(0) = 2   '"prime" the primes list with the first prime'
        NextPrime = 1

        'Map (and Remap) the window with Sqrt(N) numbers, Sqrt(N) times to'
        ' sequentially map all of the numbers <= N.'
        Do
            'Sieve the primes across the current window'
            PrimeIndex = 0
            'note: cant use enumerator for the loop below because NextPrime'
            ' changes during the first window as new primes <= SQRT(N) are accumulated'
            Do While PrimeIndex < NextPrime
                'get the next prime in the list'
                p = Primes(PrimeIndex)
                'find the first multiple of (p) in the current window range'
                k = PrevLast + p - (PrevLast Mod p)

                Do
                    With Numbers(k - FirstValue)
                        .UnFactored = .UnFactored \ p   'always works the first time'
                        .Phi = .Phi * (p - 1)           'Phi = PRODUCT( (Pi-1)*Pi^(Ei-1) )'
                        'The loop test that follows is probably the central CPU overhead'
                        ' I believe that it is O(N*Log(Log(N)), which is virtually O(N)'
                        ' ( for instance at N = 10^12, Log(Log(N)) = 3.3 )'
                        Do While (.UnFactored Mod p) = 0
                            .UnFactored = .UnFactored \ p
                            .Phi = .Phi * p
                        Loop
                    End With

                    'skip ahead to the next multiple of p: '
                    '(this is what makes it so fast, never have to try prime factors that dont apply)'
                    k += p
                    'repeat until we step out of the current window:'
                Loop While k < NextFirst

                'if this is the first window, then scan ahead for primes'
                If IsFirstWindow Then
                    For i = Primes(NextPrime - 1) + 1 To p ^ 2 - 1  'the range of possible new primes'
                        'Dont go beyond the first window'
                        If i >= WindowSize Then Exit For
                        If Numbers(i - FirstValue).UnFactored = i Then
                            'this is a prime less than SQRT(N), so add it to the list.'
                            Primes(NextPrime) = i
                            NextPrime += 1
                        End If
                    Next
                End If

                PrimeIndex += 1     'move to the next prime'
            Loop

            'Now Finish & Emit each one'
            For k = FirstValue To LastValue
                With Numbers(k - FirstValue)
                    'Primes larger than Sqrt(N) will not be finished: '
                    If .UnFactored > 1 Then
                        'Not done factoring, must be an large prime factor remaining: '
                        .Phi = .Phi * (.UnFactored - 1)
                        .UnFactored = 1
                    End If

                    'Emit the value pair: (k, Phi(k)) '
                    EmitPhi(k, .Phi)
                End With
            Next

            're-Map to the next window '
            IsFirstWindow = False
            MapWindow(NextFirst)
        Loop While FirstValue <= N
    End Sub

    Sub EmitPhi(ByVal k As Long, ByVal Phi As Long)
        'just a placeholder for now, that raises an event to the display form' 
        ' periodically for reporting purposes.  Change this to do the actual'
        ' emitting.'
        If (k Mod ReportInterval) = 0 Then
            RaiseEvent EmitTotientPair(k, Phi)
        End If
    End Sub

    Public Sub MapWindow(ByVal FirstVal As Long)
        'Efficiently reset the window so that we do not have to re-allocate it.'

        'init all of the boundary values'
        FirstValue = FirstVal
        PrevLast = FirstValue - 1
        NextFirst = FirstValue + WindowSize
        LastValue = NextFirst - 1

        'Initialize the Numbers prime factor arrays'
        Dim i As Long
        For i = 0 To WindowSize - 1
            With Numbers(i)
                .UnFactored = i + FirstValue 'initially equal to the number itself'
                .Phi = 1        'starts at mulplicative identity(1)'
            End With
        Next
    End Sub

    Function PiMax(ByVal x As Long) As Long
        'estimate of pi(n) == {primes <= (n)} that is never less'
        ' than the actual number of primes. (from P. Dusart, 1999)'
        Return (x / Log(x)) * (1.0 + 1.2762 / Log(x))
    End Function
End Class

Note-se que, em O (N * (log (N))), esta rotina é factoring cada número, em O ((log (N))), em média, o que é muito mais rápido do que o fatoração mais rápido único N algoritmos situada por algumas das respostas aqui. De fato, em N = 10 ^ 12 é 2400 vezes mais rápido!

Eu testei essa rotina no meu 2Ghz Intel Core 2 laptop e ele calcula mais de 3.000.000 Phi () valores por segundo. A esta velocidade, você levaria cerca de 4 dias para calcular 10 ^ 12 valores. Eu também testei até exatidão 100.000.000 sem erros. É baseado em números inteiros de 64 bits, então qualquer coisa até 2 ^ 63 (10 ^ 19) deve ser precisa (embora muito lento para qualquer um).

Eu também tenho um Visual Studio WinForm (também VB.net) para a execução / testá-lo, que eu possa prestar se você quiser.

Deixe-me saber se você tiver quaisquer perguntas.


Conforme solicitado nos comentários, eu adicionei abaixo uma versão C # do código. No entanto, porque eu estou atualmente no meio de alguns outros projetos, eu não tenho tempo para convertê-lo eu mesmo, então eu tenho um usado do VB on-line para sites de # conversão C ( http://www.carlosag.net/tools/codetranslator/ ). Então, estar ciente de que este era auto-convertido e eu não tive tempo para testar ou verificar isso sozinho ainda.

using System.Math;
public class TotientSerialCalculator {

    // Implements an extremely efficient Serial Totient(phi) calculator   '
    //   This implements an optimized windowed Sieve of Eratosthenes.  The'
    //  window size is set at Sqrt(N) both to optimize collecting and     '
    //  applying all of the Primes below Sqrt(N), and to minimize         '
    //  window-turning overhead.                                          '
    //                                                                    '
    //  CPU complexity is O( N * Log(Log(N)) ), which is virtually linear.'
    //                                                                    '
    //  MEM Complexity is O( Sqrt(N) ).                                   '
    //                                                                    '
    //  This is probalby the ideal combination, as any attempt to further '
    // reduce memory will almost certainly result in disproportionate increases'
    // in CPU complexity, and vice-versa.                                 '
    struct NumberFactors {

        private long UnFactored;  // the part of the number that still needs to be factored'
        private long Phi;
    }

    private long ReportInterval;
    private long PrevLast;       // the last value in the previous window'
    private long FirstValue;     // the first value in this windows range'
    private long WindowSize;
    private long LastValue;      // the last value in this windows range'
    private long NextFirst;      // the first value in the next window'

    // Array that stores all of the NumberFactors in the current window.'
    //  this is the primary memory consumption for the class and it'
    //  is 16 * Sqrt(N) Bytes, which is O(Sqrt(N)).'
    public NumberFactors[] Numbers;
    //  For N=10^12 (1 trilion), this will be 16MB, which should be bearable anywhere.'
    // (note that the Primes() array is a secondary memory consumer'
    //   at O(pi(Sqrt(N)), which will be within 10x of O(Sqrt(N)))'

//NOTE: this part looks like it did not convert correctly
    public event EventHandler EmitTotientPair;
    private long k;
    private long Phi;

    // ===== The Routine To Call: ========================'
    public void EmitTotientPairsToN(long N) {
        // Routine to Emit Totient pairs {k, Phi(k)} for k = 1 to N'
        //    2009-07-14, RBarryYoung, Created.'
        long i;
        long k;
        // the current number being factored'
        long p;
        // the current prime factor'
        // Establish the Window frame:'
        //    note: WindowSize is the critical value that controls both memory'
        //     usage and CPU consumption and must be SQRT(N) for it to work optimally.'
        WindowSize = Ceiling(Sqrt(double.Parse(N)));
        object Numbers;
        this.MapWindow(1);
        bool IsFirstWindow = true;
        ReportInterval = (N / 100);
        // Allocate the primes array to hold the primes list:'
        //   Only primes <= SQRT(N) are needed for factoring'
        //   PiMax(X) is a Max estimate of the number of primes <= X'
        long[] Primes;
        long PrimeIndex;
        long NextPrime;
        // init the primes list and its pointers'
        object Primes;
        -1;
        Primes[0] = 2;
        // "prime" the primes list with the first prime'
        NextPrime = 1;
        // Map (and Remap) the window with Sqrt(N) numbers, Sqrt(N) times to'
        //  sequentially map all of the numbers <= N.'
        for (
        ; (FirstValue <= N); 
        ) {
            PrimeIndex = 0;
            // note: cant use enumerator for the loop below because NextPrime'
            //  changes during the first window as new primes <= SQRT(N) are accumulated'
            while ((PrimeIndex < NextPrime)) {
                // get the next prime in the list'
                p = Primes[PrimeIndex];
                // find the first multiple of (p) in the current window range'
                k = (PrevLast 
                            + (p 
                            - (PrevLast % p)));
                for (
                ; (k < NextFirst); 
                ) {
                    // With...
                    UnFactored;
                    p;
                    // always works the first time'
                    (Phi 
                                * (p - 1));
                    while (// TODO: Warning!!!! NULL EXPRESSION DETECTED...
                    ) {
                        (UnFactored % p);
                        UnFactored;
                        (Phi * p);
                    }

                    // skip ahead to the next multiple of p: '
                    // (this is what makes it so fast, never have to try prime factors that dont apply)'
                    k = (k + p);
                    // repeat until we step out of the current window:'
                }

                // if this is the first window, then scan ahead for primes'
                if (IsFirstWindow) {
                    for (i = (Primes[(NextPrime - 1)] + 1); (i 
                                <= (p | (2 - 1))); i++) {
                        // the range of possible new primes'
                        // TODO: Warning!!! The operator should be an XOR ^ instead of an OR, but not available in CodeDOM
                        // Dont go beyond the first window'
                        if ((i >= WindowSize)) {
                            break;
                        }

                        if ((Numbers[(i - FirstValue)].UnFactored == i)) {
                            // this is a prime less than SQRT(N), so add it to the list.'
                            Primes[NextPrime] = i;
                            NextPrime++;
                        }

                    }

                }

                PrimeIndex++;
                // move to the next prime'
            }

            // Now Finish & Emit each one'
            for (k = FirstValue; (k <= LastValue); k++) {
                // With...
                // Primes larger than Sqrt(N) will not be finished: '
                if ((Numbers[(k - FirstValue)].UnFactored > 1)) {
                    // Not done factoring, must be an large prime factor remaining: '
                    (Numbers[(k - FirstValue)].Phi * (Numbers[(k - FirstValue)].UnFactored - 1).UnFactored) = 1;
                    Numbers[(k - FirstValue)].Phi = 1;
                }

                // Emit the value pair: (k, Phi(k)) '
                this.EmitPhi(k, Numbers[(k - FirstValue)].Phi);
            }

            // re-Map to the next window '
            IsFirstWindow = false;
            this.MapWindow(NextFirst);
        }

    }

    void EmitPhi(long k, long Phi) {
        // just a placeholder for now, that raises an event to the display form' 
        //  periodically for reporting purposes.  Change this to do the actual'
        //  emitting.'
        if (((k % ReportInterval) 
                    == 0)) {
            EmitTotientPair(k, Phi);
        }

    }

    public void MapWindow(long FirstVal) {
        // Efficiently reset the window so that we do not have to re-allocate it.'
        // init all of the boundary values'
        FirstValue = FirstVal;
        PrevLast = (FirstValue - 1);
        NextFirst = (FirstValue + WindowSize);
        LastValue = (NextFirst - 1);
        // Initialize the Numbers prime factor arrays'
        long i;
        for (i = 0; (i 
                    <= (WindowSize - 1)); i++) {
            // With...
            // initially equal to the number itself'
            Phi = 1;
            // starts at mulplicative identity(1)'
        }

    }

    long PiMax(long x) {
        // estimate of pi(n) == {primes <= (n)} that is never less'
        //  than the actual number of primes. (from P. Dusart, 1999)'
        return ((x / Log(x)) * (1 + (1.2762 / Log(x))));
    }
}

Outras dicas

Ninguém encontrou uma maneira mais rápida para calcular phi (k) (aka, função totient de Euler ) do que por primeiro encontrar os fatores primos de k. melhores matemáticos do mundo têm jogado muitos ciclos de CPU para o problema desde 1977, uma vez que encontrar uma forma mais rápida de resolver este problema seria criar uma fraqueza no RSA chave pública algoritmo . (Tanto o público e a chave privada no RSA são calculados com base phi (n), onde n é o produto de dois números primos grandes.)

O cálculo da phi (k) tem que ser feito usando a fatoração nobre de k, que é a única maneira sensata de fazê-lo. Se você precisar de uma reciclagem sobre isso, wikipedia carrega a fórmula .

Se você agora tem que calcular todos os divisores primos de cada número entre 1 e um grande N, você vai morrer de velhice antes de ver qualquer resultado, então eu iria para o contrário, ou seja, construir todos os números abaixo N , usando seus possíveis fatores primos, ou seja, todos os primos menor ou igual a n.

Seu problema é, portanto, vai ser semelhante ao computar todos os divisores de um número, só você não sabe o que é o número máximo de vezes que você pode encontrar um certo nobre na fatoração de antemão. Ajustando um iterador originalmente escrito por Tim Peters na lista python (algo eu escrevi sobre ...) para incluir a função totient, uma possível implementação em python que os rendimentos k, phi (k) pares poderia ser a seguinte:

def composites(factors, N) :
    """
    Generates all number-totient pairs below N, unordered, from the prime factors.
    """
    ps = sorted(set(factors))
    omega = len(ps)

    def rec_gen(n = 0) :
        if n == omega :
            yield (1,1)
        else :
            pows = [(1,1)]
            val = ps[n]
            while val <= N :
                pows += [(val, val - pows[-1][0])]
                val *= ps[n]
            for q, phi_q in rec_gen(n + 1) :
                for p, phi_p in pows :
                    if p * q > N :
                        break
                    else :
                        yield p * q, phi_p * phi_q

    for p in rec_gen() :
        yield p

Se precisar de ajuda em computação todos os factores primos abaixo N, tenho também blog sobre isso ... Tenha em mente, no entanto, que a computação todos os números primos abaixo de 10 12 é por si só um feito notável .. .

É este do Projeto Euler 245? Lembro-me essa pergunta, e eu dei em cima dele.

A maneira mais rápida que eu encontrei para calcular totient era multiplicar os fatores primos (p-1) em conjunto, dado que k tem fatores não repetido (que nunca foi o caso se eu me lembro o problema corretamente).

Assim, para fatores de cálculo, provavelmente seria melhor usar gmpy.next_prime ou pyecm (curva elíptica fatoração).

Você também pode peneirar os fatores primos como Jaime sugere. Para números de até 10 12 , o fator máximo principal é inferior a 1 milhão, que deve ser razoável.

Se você memoize fatorações, poderia acelerar a sua função phi ainda mais.

Para este tipo de problemas que eu estou usando um iterador que retorna para cada inteiro m a lista de números primos N ) que divide m. Para implementar uma iteração tal que estou usando uma matriz A de comprimento R onde R > sqrt ( N ) . Em cada ponto da matriz A contém uma lista de números primos que dividem inteiros .. m m + R -1. Ou seja, A [ m % R ] contém primos dividindo m . Cada nobre p é exatamente uma lista, ou seja, em A [ m % R ] para o menor inteiro no a gama m .. m + R -1 que é divisível por p . Ao gerar o próximo elemento da iteração simplesmente a lista em A [ m % R ] é devolvido. Em seguida, a lista de números primos são removidos A [ m % R ] e cada um primo p é acrescentada ao A [( m + p )% R].

Com uma lista de números primos N ) dividindo m , é fácil encontrar a fatoração de m , uma vez que existe a mais um primo maior do que sqrt ( N ).

Este método tem complexidade O ( N (log ( N ))) sob a suposição de que todas as operações, incluindo operações de lista tomar O (1). O requisito de memória é O (sqrt ( N )).

Não é, infelizmente, alguma constante sobrecarga aqui, portanto, eu estava procurando uma maneira mais elegante para gerar os phi valores (n), mas até para eu não fui bem sucedido.

Aqui está um gerador de python eficiente. A limitação é que ele não produz os resultados em ordem. Baseia-se https://stackoverflow.com/a/10110008/412529 .

complexidade memória é O (log (N)), uma vez que só tem de armazenar uma lista de fatores primos de um número único de cada vez.

complexidade CPU é apenas um pouco superlinear, algo como O (N log log N).

def totientsbelow(N):
    allprimes = primesbelow(N+1)
    def rec(n, partialtot=1, min_p = 0):
        for p in allprimes:
            if p > n:
                break
            # avoid double solutions such as (6, [2,3]), and (6, [3,2])
            if p < min_p: continue
            yield (p, p-1, [p])
            for t, tot2, r in rec(n//p, partialtot, min_p = p): # uses integer division
                yield (t*p, tot2 * p if p == r[0] else tot2 * (p-1), [p] + r)

    for n, t, factors in rec(N):
        yield (n, t)

Eu acho que você pode ir a outra maneira ao redor. Em vez de factorizing um inteiro k para obter phi (k), você pode tentar gerar todos os inteiros de 1 a N de números primos e obter phi (k) rapidamente. Por exemplo, se P n é o Primeiro máximo que é menor do que N, você pode gerar todos os inteiros menos de N por

P 1 i 1 * P 2 i 2 * ... * P n i n onde cada i j executado a partir de 0 a [ log (N) / log (P j )] ([] representa a função de chão).

Dessa forma, você pode obter phi (k) rapidamente wihout caro primeiro-factorização e ainda percorrer todos k entre 1 e N (não em ordem, mas eu acho que você não se preocupam com ordem).

Sieve os totients a n :

(define (totients n)
  (let ((tots (make-vector (+ n 1))))
    (do ((i 0 (+ i 1))) ((< n i))
      (vector-set! tots i i))
    (do ((i 2 (+ i 1))) ((< n i) tots)
      (when (= i (vector-ref tots i))
        (vector-set! tots i (- i 1))
        (do ((j (+ i i) (+ i j))) ((< n j))
          (vector-set! tots j
            (* (vector-ref tots j) (- 1 (/ i)))))))))

Esta fatoriza N = PQ, onde P & Q são primos.

funciona muito bem, no Elixir ou Erlang.

Você pode experimentar diferentes geradores para a sua sequência pseudo-aleatória. x*x + 1 é comumente usado.

Esta linha: defp f0(x, n), do: rem((x * x) + 1, n)

Outros pontos possíveis de melhoria: melhor ou alternativa gcd , rem e abs funções

defmodule Factorizer do

  def factorize(n) do
    t = System.system_time

    x = pollard(n, 2_000_000, 2_000_000)
    y = div(n, x)
    p = min(x, y)
    q = max(x, y)

    t = System.system_time - t

    IO.puts "
Factorized #{n}: into [#{p} , #{q}] in #{t} μs
"

    {p, q}
  end

  defp gcd(a,0), do: a
  defp gcd(a,b), do: gcd(b,rem(a,b))

  defp pollard(n, a, b) do
    a = f0(a, n)
    b = f0(f0(b, n), n)

    p = gcd(abs(b - a), n)

    case p > 1 do
      true  -> p
      false -> pollard(n, a, b)
    end
  end

  defp f0(x, n), do: rem((x * x) + 1, n)

end
Licenciado em: CC-BY-SA com atribuição
Não afiliado a StackOverflow
scroll top