Вопрос

Why doesn't std::unordered_map<tuple<int, int>, string> just work out of the box? It is tedious to have to define a hash function for tuple<int, int>, e.g.

template<> struct do_hash<tuple<int, int>>                               
{   size_t operator()(std::tuple<int, int> const& tt) const {...}  }; 

Building an unordered map with tuples as keys (Matthieu M.) shows how to automate this for boost::tuple. Is there anyway of doing this for c++0x tuples without using variadic templates?

Surely this should be in the standard :(

Это было полезно?

Решение

This works on gcc 4.5 allowing all c++0x tuples containing standard hashable types to be members of unordered_map and unordered_set without further ado. (I put the code in a header file and just include it.)

The function has to live in the std namespace so that it is picked up by argument-dependent name lookup (ADL).

Is there a simpler solution?

#include <tuple>
namespace std{
    namespace
    {

        // Code from boost
        // Reciprocal of the golden ratio helps spread entropy
        //     and handles duplicates.
        // See Mike Seymour in magic-numbers-in-boosthash-combine:
        //     http://stackoverflow.com/questions/4948780

        template <class T>
        inline void hash_combine(std::size_t& seed, T const& v)
        {
            seed ^= std::hash<T>()(v) + 0x9e3779b9 + (seed<<6) + (seed>>2);
        }

        // Recursive template code derived from Matthieu M.
        template <class Tuple, size_t Index = std::tuple_size<Tuple>::value - 1>
        struct HashValueImpl
        {
          static void apply(size_t& seed, Tuple const& tuple)
          {
            HashValueImpl<Tuple, Index-1>::apply(seed, tuple);
            hash_combine(seed, std::get<Index>(tuple));
          }
        };

        template <class Tuple>
        struct HashValueImpl<Tuple,0>
        {
          static void apply(size_t& seed, Tuple const& tuple)
          {
            hash_combine(seed, std::get<0>(tuple));
          }
        };
    }

    template <typename ... TT>
    struct hash<std::tuple<TT...>> 
    {
        size_t
        operator()(std::tuple<TT...> const& tt) const
        {                                              
            size_t seed = 0;                             
            HashValueImpl<std::tuple<TT...> >::apply(seed, tt);    
            return seed;                                 
        }                                              

    };
}

Standard Conformant code

Yakk points out that specialising things in the std namespace is actually undefined behaviour. If you wish to have a standards conforming solution, then you need to move all of this code into your own namespace and give up any idea of ADL finding the right hash implementation automatically. Instead of :

unordered_set<tuple<double, int> > test_set;

You need:

unordered_set<tuple<double, int>, hash_tuple::hash<tuple<double, int>>> test2;

where hash_tuple is your own namespace rather than std::.

To do this, you first have to declare a hash implementation inside the hash_tuple namespace. This will forward all non tuple types to the std::hash:

namespace hash_tuple{

template <typename TT>
struct hash
{
    size_t
    operator()(TT const& tt) const
    {                                              
        return std::hash<TT>()(tt);                                 
    }                                              
};
}

Make sure that hash_combine calls hash_tuple::hash and not std::hash

namespace hash_tuple{

namespace
    {
    template <class T>
    inline void hash_combine(std::size_t& seed, T const& v)
    {
        seed ^= hash_tuple::hash<T>()(v) + 0x9e3779b9 + (seed<<6) + (seed>>2);
    }
}

Then include all the other previous code but put it inside namespace hash_tuple and not std::

namespace hash_tuple{

    namespace
    {
        // Recursive template code derived from Matthieu M.
        template <class Tuple, size_t Index = std::tuple_size<Tuple>::value - 1>
        struct HashValueImpl
        {
          static void apply(size_t& seed, Tuple const& tuple)
          {
            HashValueImpl<Tuple, Index-1>::apply(seed, tuple);
            hash_combine(seed, std::get<Index>(tuple));
          }
        };

        template <class Tuple>
        struct HashValueImpl<Tuple,0>
        {
          static void apply(size_t& seed, Tuple const& tuple)
          {
            hash_combine(seed, std::get<0>(tuple));
          }
        };
    }

    template <typename ... TT>
    struct hash<std::tuple<TT...>> 
    {
        size_t
        operator()(std::tuple<TT...> const& tt) const
        {                                              
            size_t seed = 0;                             
            HashValueImpl<std::tuple<TT...> >::apply(seed, tt);    
            return seed;                                 
        }                                              
    };

}

Другие советы

#include <boost/functional/hash.hpp>
#include <tuple>

namespace std
{

template<typename... T>
struct hash<tuple<T...>>
{
    size_t operator()(tuple<T...> const& arg) const noexcept
    {
        return boost::hash_value(arg);
    }
};

}

In my C++0x draft, 20.8.15 says hash is specialized for built-in types (including pointers, but doesn't seem to imply dereferencing them). It also appears to be specialized for error_code, bitset<N>, unique_ptr<T, D>, shared_ptr<T>, typeindex, string, u16string, u32string, wstring, vector<bool, Allocator>, and thread::id. (facinating list!)

I've not used C++0x variadics, so my formatting is probably way off, but something along these lines might work for all tuples.

size_t hash_combiner(size_t left, size_t right) //replacable
{ return left + 0x9e3779b9 + (right<<6) + (right>>2);}

template<int index, class...types>
struct hash_impl {
    size_t operator()(size_t a, const std::tuple<types...>& t) const {
        typedef typename std::tuple_element<index, std::tuple<types...>>::type nexttype;
        hash_impl<index-1, types...> next;
        size_t b = std::hash<nexttype>()(std::get<index>(t));
        return next(hash_combiner(a, b), t); 
    }
};
template<class...types>
struct hash_impl<0, types...> {
    size_t operator()(size_t a, const std::tuple<types...>& t) const {
        typedef typename std::tuple_element<0, std::tuple<types...>>::type nexttype;
        size_t b = std::hash<nexttype>()(std::get<0>(t));
        return hash_combiner(a, b); 
    }
};

template<class...types>
struct tuple_hash<std::tuple<types...>> {
    size_t operator()(const std::tuple<types...>& t) {
        const size_t begin = std::tuple_size<std::tuple<types...>>::value-1;
        return hash_impl<begin, types...>()(0, t);
    }
}

This version actually compiles and runs

Yakk has observed that specializing std::hash directly is technically not allowed, since we're specializing a standard library template with a declaration that does not depend on a user-defined type.

With C++20, it is possible to use fold expressions and generic lambdas to compute hash of a tuple without recursion. I prefer to rely on std::hash<uintmax_t> instead of manually combining hashes:

#include <cinttypes>
#include <cstddef>
#include <functional>
#include <tuple>

class hash_tuple {
    template<class T>
    struct component {
        const T& value;
        component(const T& value) : value(value) {}
        uintmax_t operator,(uintmax_t n) const {
            n ^= std::hash<T>()(value);
            n ^= n << (sizeof(uintmax_t) * 4 - 1);
            return n ^ std::hash<uintmax_t>()(n);
        }
    };

public:
    template<class Tuple>
    size_t operator()(const Tuple& tuple) const {
        return std::hash<uintmax_t>()(
            std::apply([](const auto& ... xs) { return (component(xs), ..., 0); }, tuple));
    }
};

- 1 in sizeof(uintmax_t) * 4 - 1 is optional, but appears to slightly improve hash distribution. This class can be used both with std::tuple and std::pair.

Лицензировано под: CC-BY-SA с атрибуция
Не связан с StackOverflow
scroll top