Можно ли написать шаблон для проверки существования функции?

StackOverflow https://stackoverflow.com/questions/257288

Вопрос

Можно ли написать шаблон, который изменяет поведение в зависимости от того, определена ли определенная функция-член в классе?

Вот простой пример того, что я хотел бы написать:

template<class T>
std::string optionalToString(T* obj)
{
    if (FUNCTION_EXISTS(T->toString))
        return obj->toString();
    else
        return "toString not defined";
}

Итак, если class T имеет toString() определен, затем он использует его;в противном случае это не так.Волшебная часть, которую я не знаю, как сделать, - это часть "FUNCTION_EXISTS".

Это было полезно?

Решение

Да, с SFINAE вы можете проверить, предоставляет ли данный класс определенный метод. Вот рабочий код:

#include <iostream>

struct Hello
{
    int helloworld() { return 0; }
};

struct Generic {};    

// SFINAE test
template <typename T>
class has_helloworld
{
    typedef char one;
    struct two { char x[2]; };

    template <typename C> static one test( typeof(&C::helloworld) ) ;
    template <typename C> static two test(...);    

public:
    enum { value = sizeof(test<T>(0)) == sizeof(char) };
};

int main(int argc, char *argv[])
{
    std::cout << has_helloworld<Hello>::value << std::endl;
    std::cout << has_helloworld<Generic>::value << std::endl;
    return 0;
}

Я только что протестировал его с Linux и gcc 4.1 / 4.3. Я не знаю, переносимо ли это на другие платформы, на которых работают другие компиляторы.

Другие советы

Этот вопрос старый, но в C ++ 11 мы получили новый способ проверки существования функций (или существования любого нетипичного члена, на самом деле), снова полагаясь на SFINAE:

template<class T>
auto serialize_imp(std::ostream& os, T const& obj, int)
    -> decltype(os << obj, void())
{
  os << obj;
}

template<class T>
auto serialize_imp(std::ostream& os, T const& obj, long)
    -> decltype(obj.stream(os), void())
{
  obj.stream(os);
}

template<class T>
auto serialize(std::ostream& os, T const& obj)
    -> decltype(serialize_imp(os, obj, 0), void())
{
  serialize_imp(os, obj, 0);
}

Теперь о некоторых объяснениях. Во-первых, я использую выражение SFINAE исключить функции serialize(_imp) из разрешения перегрузки, если первое выражение внутри decltype недопустимо (иначе функция не существует).

void() используется для создания типа возврата всех этих функций void.

Аргумент 0 используется для предпочтения перегрузки os << obj, если оба доступны (литерал int имеет тип sfinae_true, и поэтому первая перегрузка лучше подходит).

<Ч>

Теперь вы, вероятно, хотите, чтобы признак проверял, существует ли функция. К счастью, это легко написать. Обратите внимание, что вам нужно написать черту самостоятельно для каждого имени функции, которое вам может понадобиться.

#include <type_traits>

template<class>
struct sfinae_true : std::true_type{};

namespace detail{
  template<class T, class A0>
  static auto test_stream(int)
      -> sfinae_true<decltype(std::declval<T>().stream(std::declval<A0>()))>;
  template<class, class A0>
  static auto test_stream(long) -> std::false_type;
} // detail::

template<class T, class Arg>
struct has_stream : decltype(detail::test_stream<T, Arg>(0)){};

Живой пример.

И к объяснениям. Во-первых, decltype(void(std::declval<T>().stream(a0)), std::true_type{}) - это вспомогательный тип, и он в основном равен написанию struct has_stream : decltype(...). Преимущество в том, что он короче.
Затем std::true_type наследует от std::false_type или test_stream в конце, в зависимости от того, прошла ли проверка std::declval sizeof или нет.
Наконец, long дает вам & Quot; value & Quot; любого типа, который вы передаете, без необходимости знать, как вы можете его построить. Обратите внимание, что это возможно только в недооцененном контексте, таком как <=>, <=> и другие.

<Ч>

Обратите внимание, что <=> необязательно, так как <=> (и все неоцененные контексты) получили это улучшение. Просто <=> уже поставляет тип и, как таковой, просто чище. Вот <=> версия одной из перегрузок:

template<class T>
void serialize_imp(std::ostream& os, T const& obj, int,
    int(*)[sizeof((os << obj),0)] = 0)
{
  os << obj;
}

Параметры <=> и <=> все еще там по той же причине. Указатель массива используется для предоставления контекста, в котором можно использовать <=>.

C ++ позволяет использовать SFINAE для этого (обратите внимание, что в C ++ 11 это это проще, потому что он поддерживает расширенный SFINAE для почти произвольных выражений - ниже было создано для работы с обычными компиляторами C ++ 03):

#define HAS_MEM_FUNC(func, name)                                        \
    template<typename T, typename Sign>                                 \
    struct name {                                                       \
        typedef char yes[1];                                            \
        typedef char no [2];                                            \
        template <typename U, U> struct type_check;                     \
        template <typename _1> static yes &chk(type_check<Sign, &_1::func > *); \
        template <typename   > static no  &chk(...);                    \
        static bool const value = sizeof(chk<T>(0)) == sizeof(yes);     \
    }

вышеупомянутый шаблон и макрос пытается создать экземпляр шаблона, давая ему тип указателя на функцию-член и фактический указатель на функцию-член. Если типы не подходят, SFINAE вызывает игнорирование шаблона. Использование как это:

HAS_MEM_FUNC(toString, has_to_string);

template<typename T> void
doSomething() {
   if(has_to_string<T, std::string(T::*)()>::value) {
      ...
   } else {
      ...
   }
}

Но учтите, что вы не можете просто вызвать эту функцию toString в этой ветке if. поскольку компилятор проверит правильность в обеих ветвях, это может привести к сбою в случаях, когда функция не существует. Одним из способов является использование SFINAE еще раз (enable_if также можно получить из boost):

template<bool C, typename T = void>
struct enable_if {
  typedef T type;
};

template<typename T>
struct enable_if<false, T> { };

HAS_MEM_FUNC(toString, has_to_string);

template<typename T> 
typename enable_if<has_to_string<T, 
                   std::string(T::*)()>::value, std::string>::type
doSomething(T * t) {
   /* something when T has toString ... */
   return t->toString();
}

template<typename T> 
typename enable_if<!has_to_string<T, 
                   std::string(T::*)()>::value, std::string>::type
doSomething(T * t) {
   /* something when T doesnt have toString ... */
   return "T::toString() does not exist.";
}

Получайте удовольствие, используя его. Преимущество в том, что он также работает для перегруженных функций-членов, а также для константных функций-членов (помните, что используйте std::string(T::*)() const в качестве типа указателя на функцию-член!).

Хотя этому вопросу уже два года, я позволю себе добавить свой ответ. Надеемся, что она будет разъяснено предыдущий, бесспорно отличный, решение. Я взял очень полезные ответы Николая Бонелли и Йоханнеса Шауба и объединил их в решение, которое, ИМХО, более читабельно, понятно и не требует расширения typeof:

template <class Type>
class TypeHasToString
{
    // This type won't compile if the second template parameter isn't of type T,
    // so I can put a function pointer type in the first parameter and the function
    // itself in the second thus checking that the function has a specific signature.
    template <typename T, T> struct TypeCheck;

    typedef char Yes;
    typedef long No;

    // A helper struct to hold the declaration of the function pointer.
    // Change it if the function signature changes.
    template <typename T> struct ToString
    {
        typedef void (T::*fptr)();
    };

    template <typename T> static Yes HasToString(TypeCheck< typename ToString<T>::fptr, &T::toString >*);
    template <typename T> static No  HasToString(...);

public:
    static bool const value = (sizeof(HasToString<Type>(0)) == sizeof(Yes));
};

Я проверил это с помощью gcc 4.1.2. В основном это заслуга Николы Бонелли и Йоханнеса Шауба, поэтому проголосуйте, если мой ответ поможет вам:)

C ++ 20 - requires выражения

С C ++ 20 приходят концепции и различные инструменты, такие как optionalToString выражения которые являются встроенным способом проверки существования функции. С помощью tehm вы можете переписать свою функцию std::is_detected следующим образом:

template<class T>
std::string optionalToString(T* obj)
{
    constexpr bool has_toString = requires(const T& t) {
        t.toString();
    };

    if constexpr (has_toString)
        return obj->toString();
    else
        return "toString not defined";
}

Pre-C ++ 20 - Инструментарий обнаружения

N4502 предлагает обнаружение Принят для включения в стандартную библиотеку C ++ 17, которая может решить проблему несколько элегантным способом. Более того, он только что был принят в основы библиотеки TS v2. В нем представлены некоторые метафункции, в том числе if constexpr , которые можно использовать для простой записи типа или функция обнаружения метафункций на вершине. Вот как это можно использовать:

template<typename T>
using toString_t = decltype( std::declval<T&>().toString() );

template<typename T>
constexpr bool has_toString = std::is_detected_v<toString_t, T>;

Обратите внимание, что приведенный выше пример не проверен. Набор инструментов для обнаружения еще не доступен в стандартных библиотеках, но в предложении содержится полная реализация, которую вы можете легко скопировать, если вам это действительно нужно. Он прекрасно работает с функцией C ++ 17 BOOST_TTI_HAS_MEMBER_FUNCTION:

template<class T>
std::string optionalToString(T* obj)
{
    if constexpr (has_toString<T>)
        return obj->toString();
    else
        return "toString not defined";
}

Boost.TTI

Еще один идиоматический набор инструментов для выполнения такой проверки, хотя и менее элегантный, - это Boost.TTI , представленный в Boost 1.54.0. Для вашего примера вам нужно использовать макрос bool. Вот как это можно использовать:

#include <boost/tti/has_member_function.hpp>

// Generate the metafunction
BOOST_TTI_HAS_MEMBER_FUNCTION(toString)

// Check whether T has a member function toString
// which takes no parameter and returns a std::string
constexpr bool foo = has_member_function_toString<T, std::string>::value;

Затем вы можете использовать has_member_function_toString для создания проверки SFINAE.

Описание

Макрос value генерирует метафункцию true, которая принимает проверенный тип в качестве первого параметра шаблона. Второй параметр шаблона соответствует типу возвращаемого значения функции-члена, а следующие параметры соответствуют типам параметров функции. Член T содержит std::string toString(), если у класса has_member_function_toString<T, std::string>::value есть функция-член has_member_function_toString<std::string T::* ()>::value.

Кроме того, <=> может принять указатель на функцию-член в качестве параметра шаблона. Следовательно, можно заменить <=> на <=>.

Простое решение для C ++ 11:

template<class T>
auto optionalToString(T* obj)
 -> decltype(  obj->toString()  )
{
    return     obj->toString();
}
auto optionalToString(...) -> string
{
    return "toString not defined";
}

Обновление, 3 года спустя: (и это не проверено). Чтобы проверить на существование, я думаю, что это будет работать:

template<class T>
constexpr auto test_has_toString_method(T* obj)
 -> decltype(  obj->toString() , std::true_type{} )
{
    return     obj->toString();
}
constexpr auto test_has_toString_method(...) -> std::false_type
{
    return "toString not defined";
}

Вот для чего нужны черты типа. К сожалению, они должны быть определены вручную. В вашем случае представьте следующее:

template <typename T>
struct response_trait {
    static bool const has_tostring = false;
};

template <>
struct response_trait<your_type_with_tostring> {
    static bool const has_tostring = true;
}

На этот вопрос уже есть длинный список ответов, но я хотел бы подчеркнуть комментарий Морвенна: есть предложение для C ++ 17, которое делает его действительно намного проще. См. N4502 для подробностей, но в качестве отдельного примера рассмотрим следующее.

Эта часть является константой, поместите ее в заголовок.

// See http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4502.pdf.
template <typename...>
using void_t = void;

// Primary template handles all types not supporting the operation.
template <typename, template <typename> class, typename = void_t<>>
struct detect : std::false_type {};

// Specialization recognizes/validates only types supporting the archetype.
template <typename T, template <typename> class Op>
struct detect<T, Op, void_t<Op<T>>> : std::true_type {};

затем есть переменная часть, где вы указываете, что вы ищете (тип, тип члена, функцию, функцию-член и т. д.). В случае с ОП:

template <typename T>
using toString_t = decltype(std::declval<T>().toString());

template <typename T>
using has_toString = detect<T, toString_t>;

Следующий пример взят из N4502 , показывает более сложный зонд:

// Archetypal expression for assignment operation.
template <typename T>
using assign_t = decltype(std::declval<T&>() = std::declval<T const &>())

// Trait corresponding to that archetype.
template <typename T>
using is_assignable = detect<T, assign_t>;

По сравнению с другими реализациями, описанными выше, эта довольно проста: достаточно сокращенного набора инструментов (void_t и detect), нет необходимости в волосатых макросах. Кроме того, об этом сообщалось (см. N4502 ), что он значительно эффективнее (время компиляции и потребление памяти компилятором), чем предыдущие подходы.

Вот живой пример . Он отлично работает с Clang, но, к сожалению, версии GCC до 5.1 следовали другой интерпретации стандарта C ++ 11, из-за которой <=> не работал должным образом. Yakk уже предоставил обходной путь: используйте следующее определение <=> ( void_t в списке параметров работает, но не как тип возвращаемого значения ):

#if __GNUC__ < 5 && ! defined __clang__
// https://stackoverflow.com/a/28967049/1353549
template <typename...>
struct voider
{
  using type = void;
};
template <typename...Ts>
using void_t = typename voider<Ts...>::type;
#else
template <typename...>
using void_t = void;
#endif

Это решение C ++ 11 для общей проблемы, если " Если бы я сделал X, он бы скомпилировал? "

template<class> struct type_sink { typedef void type; }; // consumes a type, and makes it `void`
template<class T> using type_sink_t = typename type_sink<T>::type;
template<class T, class=void> struct has_to_string : std::false_type {}; \
template<class T> struct has_to_string<
  T,
  type_sink_t< decltype( std::declval<T>().toString() ) >
>: std::true_type {};

Черта has_to_string такая, что has_to_string<T>::value является true тогда и только тогда, когда T имеет метод .toString, который можно вызывать с 0 аргументами в этом контексте.

Далее я бы использовал диспетчеризацию тегов:

namespace details {
  template<class T>
  std::string optionalToString_helper(T* obj, std::true_type /*has_to_string*/) {
    return obj->toString();
  }
  template<class T>
  std::string optionalToString_helper(T* obj, std::false_type /*has_to_string*/) {
    return "toString not defined";
  }
}
template<class T>
std::string optionalToString(T* obj) {
  return details::optionalToString_helper( obj, has_to_string<T>{} );
}

, который, как правило, более удобен в обслуживании, чем сложные выражения SFINAE.

Вы можете написать эти черты с помощью макроса, если вы обнаружите, что делаете это много, но они относительно просты (несколько строк каждая), поэтому, возможно, это того не стоит:

#define MAKE_CODE_TRAIT( TRAIT_NAME, ... ) \
template<class T, class=void> struct TRAIT_NAME : std::false_type {}; \
template<class T> struct TRAIT_NAME< T, type_sink_t< decltype( __VA_ARGS__ ) > >: std::true_type {};

вышеописанное создает макрос MAKE_CODE_TRAIT. Вы передаете ему имя нужной черты и некоторый код, который может проверить тип <=>. Таким образом:

MAKE_CODE_TRAIT( has_to_string, std::declval<T>().toString() )

создает вышеупомянутый класс черт.

Кроме того, вышеупомянутая методика является частью того, что MS называет " выражением SFINAE " и их компилятор 2013 терпит неудачу довольно сложно.

Обратите внимание, что в C ++ 1y возможен следующий синтаксис:

template<class T>
std::string optionalToString(T* obj) {
  return compiled_if< has_to_string >(*obj, [&](auto&& obj) {
    return obj.toString();
  }) *compiled_else ([&]{ 
    return "toString not defined";
  });
}

- условная ветвь встроенной компиляции, которая использует множество функций C ++. Делать это, вероятно, не стоит, так как выгода (от встроенного кода) не стоит затрат (почти никто не понимает, как это работает), но может оказаться интересным наличие вышеупомянутого решения.

Вот несколько фрагментов использования:* Мужество для всего этого находится дальше внизу.

Проверьте наличие участника x в данном классе.Это может быть var, func, class, union или enum:

CREATE_MEMBER_CHECK(x);
bool has_x = has_member_x<class_to_check_for_x>::value;

Проверьте наличие функции-члена void x():

//Func signature MUST have T as template variable here... simpler this way :\
CREATE_MEMBER_FUNC_SIG_CHECK(x, void (T::*)(), void__x);
bool has_func_sig_void__x = has_member_func_void__x<class_to_check_for_x>::value;

Проверка наличия переменной-члена x:

CREATE_MEMBER_VAR_CHECK(x);
bool has_var_x = has_member_var_x<class_to_check_for_x>::value;

Проверьте наличие класса-члена x:

CREATE_MEMBER_CLASS_CHECK(x);
bool has_class_x = has_member_class_x<class_to_check_for_x>::value;

Проверьте наличие членского объединения x:

CREATE_MEMBER_UNION_CHECK(x);
bool has_union_x = has_member_union_x<class_to_check_for_x>::value;

Проверьте наличие перечисления участников x:

CREATE_MEMBER_ENUM_CHECK(x);
bool has_enum_x = has_member_enum_x<class_to_check_for_x>::value;

Проверьте наличие какой-либо функции-члена x независимо от подписи:

CREATE_MEMBER_CHECK(x);
CREATE_MEMBER_VAR_CHECK(x);
CREATE_MEMBER_CLASS_CHECK(x);
CREATE_MEMBER_UNION_CHECK(x);
CREATE_MEMBER_ENUM_CHECK(x);
CREATE_MEMBER_FUNC_CHECK(x);
bool has_any_func_x = has_member_func_x<class_to_check_for_x>::value;

или

CREATE_MEMBER_CHECKS(x);  //Just stamps out the same macro calls as above.
bool has_any_func_x = has_member_func_x<class_to_check_for_x>::value;

Детали и ядро:

/*
    - Multiple inheritance forces ambiguity of member names.
    - SFINAE is used to make aliases to member names.
    - Expression SFINAE is used in just one generic has_member that can accept
      any alias we pass it.
*/

//Variadic to force ambiguity of class members.  C++11 and up.
template <typename... Args> struct ambiguate : public Args... {};

//Non-variadic version of the line above.
//template <typename A, typename B> struct ambiguate : public A, public B {};

template<typename A, typename = void>
struct got_type : std::false_type {};

template<typename A>
struct got_type<A> : std::true_type {
    typedef A type;
};

template<typename T, T>
struct sig_check : std::true_type {};

template<typename Alias, typename AmbiguitySeed>
struct has_member {
    template<typename C> static char ((&f(decltype(&C::value))))[1];
    template<typename C> static char ((&f(...)))[2];

    //Make sure the member name is consistently spelled the same.
    static_assert(
        (sizeof(f<AmbiguitySeed>(0)) == 1)
        , "Member name specified in AmbiguitySeed is different from member name specified in Alias, or wrong Alias/AmbiguitySeed has been specified."
    );

    static bool const value = sizeof(f<Alias>(0)) == 2;
};

Макросы (El Diablo!):

CREATE_MEMBER_CHECK СОЗДАТЬ ЭЛЕМЕНТ_ЧЕКА:

//Check for any member with given name, whether var, func, class, union, enum.
#define CREATE_MEMBER_CHECK(member)                                         \
                                                                            \
template<typename T, typename = std::true_type>                             \
struct Alias_##member;                                                      \
                                                                            \
template<typename T>                                                        \
struct Alias_##member <                                                     \
    T, std::integral_constant<bool, got_type<decltype(&T::member)>::value>  \
> { static const decltype(&T::member) value; };                             \
                                                                            \
struct AmbiguitySeed_##member { char member; };                             \
                                                                            \
template<typename T>                                                        \
struct has_member_##member {                                                \
    static const bool value                                                 \
        = has_member<                                                       \
            Alias_##member<ambiguate<T, AmbiguitySeed_##member>>            \
            , Alias_##member<AmbiguitySeed_##member>                        \
        >::value                                                            \
    ;                                                                       \
}

СОЗДАНИЕ_MEMBER_VAR_CHECK:

//Check for member variable with given name.
#define CREATE_MEMBER_VAR_CHECK(var_name)                                   \
                                                                            \
template<typename T, typename = std::true_type>                             \
struct has_member_var_##var_name : std::false_type {};                      \
                                                                            \
template<typename T>                                                        \
struct has_member_var_##var_name<                                           \
    T                                                                       \
    , std::integral_constant<                                               \
        bool                                                                \
        , !std::is_member_function_pointer<decltype(&T::var_name)>::value   \
    >                                                                       \
> : std::true_type {}

ПРОВЕРКА CREATE_MEMBER_FUNC_SIG_CHECK:

//Check for member function with given name AND signature.
#define CREATE_MEMBER_FUNC_SIG_CHECK(func_name, func_sig, templ_postfix)    \
                                                                            \
template<typename T, typename = std::true_type>                             \
struct has_member_func_##templ_postfix : std::false_type {};                \
                                                                            \
template<typename T>                                                        \
struct has_member_func_##templ_postfix<                                     \
    T, std::integral_constant<                                              \
        bool                                                                \
        , sig_check<func_sig, &T::func_name>::value                         \
    >                                                                       \
> : std::true_type {}

ПРОВЕРКА CREATE_MEMBER_CLASS_CHECK:

//Check for member class with given name.
#define CREATE_MEMBER_CLASS_CHECK(class_name)               \
                                                            \
template<typename T, typename = std::true_type>             \
struct has_member_class_##class_name : std::false_type {};  \
                                                            \
template<typename T>                                        \
struct has_member_class_##class_name<                       \
    T                                                       \
    , std::integral_constant<                               \
        bool                                                \
        , std::is_class<                                    \
            typename got_type<typename T::class_name>::type \
        >::value                                            \
    >                                                       \
> : std::true_type {}

ПРОВЕРКА CREATE_MEMBER_UNION_CHECK:

//Check for member union with given name.
#define CREATE_MEMBER_UNION_CHECK(union_name)               \
                                                            \
template<typename T, typename = std::true_type>             \
struct has_member_union_##union_name : std::false_type {};  \
                                                            \
template<typename T>                                        \
struct has_member_union_##union_name<                       \
    T                                                       \
    , std::integral_constant<                               \
        bool                                                \
        , std::is_union<                                    \
            typename got_type<typename T::union_name>::type \
        >::value                                            \
    >                                                       \
> : std::true_type {}

ПРОВЕРКА CREATE_MEMBER_ENUM_CHECK:

//Check for member enum with given name.
#define CREATE_MEMBER_ENUM_CHECK(enum_name)                 \
                                                            \
template<typename T, typename = std::true_type>             \
struct has_member_enum_##enum_name : std::false_type {};    \
                                                            \
template<typename T>                                        \
struct has_member_enum_##enum_name<                         \
    T                                                       \
    , std::integral_constant<                               \
        bool                                                \
        , std::is_enum<                                     \
            typename got_type<typename T::enum_name>::type  \
        >::value                                            \
    >                                                       \
> : std::true_type {}

ПРОВЕРКА CREATE_MEMBER_FUNC_CHECK:

//Check for function with given name, any signature.
#define CREATE_MEMBER_FUNC_CHECK(func)          \
template<typename T>                            \
struct has_member_func_##func {                 \
    static const bool value                     \
        = has_member_##func<T>::value           \
        && !has_member_var_##func<T>::value     \
        && !has_member_class_##func<T>::value   \
        && !has_member_union_##func<T>::value   \
        && !has_member_enum_##func<T>::value    \
    ;                                           \
}

СОЗДАНИЕ_MEMBER_CHECKS:

//Create all the checks for one member.  Does NOT include func sig checks.
#define CREATE_MEMBER_CHECKS(member)    \
CREATE_MEMBER_CHECK(member);            \
CREATE_MEMBER_VAR_CHECK(member);        \
CREATE_MEMBER_CLASS_CHECK(member);      \
CREATE_MEMBER_UNION_CHECK(member);      \
CREATE_MEMBER_ENUM_CHECK(member);       \
CREATE_MEMBER_FUNC_CHECK(member)

Стандартное решение C ++, представленное здесь litb, не будет работать должным образом, если метод определен в базовом классе.

Для решения, которое обрабатывает эту ситуацию, обратитесь к:

На русском: http://www.rsdn.ru/forum/message/2759773.1.aspx

Английский перевод Roman.Perepelitsa: http: // groups .google.com / group / comp.lang.c ++. moderated / tree / browse_frm / thread / 4f7c7a96f9afbe44 / c95a7b4c645e449f? pli = 1

Это безумно умно. Однако одна проблема с этим решением состоит в том, что выдает ошибки компилятора, если тестируемый тип является тем, который не может использоваться в качестве базового класса (например, примитивные типы)

В Visual Studio я заметил, что при работе с методом, не имеющим аргументов, необходимо добавить дополнительную пару избыточных () вокруг аргументов, чтобы сделать вывод () в выражении sizeof.

Я написал ответ на этот вопрос в другой ветке, которая (в отличие от решений выше) также проверяет унаследованные функции-члены:

SFINAE для проверки унаследованных функций-членов

Вот несколько примеров из этого решения:

Пример1:

Мы проверяем участника со следующей подписью: T::const_iterator begin() const

template<class T> struct has_const_begin
{
    typedef char (&Yes)[1];
    typedef char (&No)[2];

    template<class U> 
    static Yes test(U const * data, 
                    typename std::enable_if<std::is_same<
                             typename U::const_iterator, 
                             decltype(data->begin())
                    >::value>::type * = 0);
    static No test(...);
    static const bool value = sizeof(Yes) == sizeof(has_const_begin::test((typename std::remove_reference<T>::type*)0));
};

Обратите внимание, что он даже проверяет константность метода, а также работает с примитивными типами. (Я имею в виду, что has_const_begin<int>::value неверно и не вызывает ошибку во время компиляции.)

Пример 2

Теперь мы ищем подпись: void foo(MyClass&, unsigned)

template<class T> struct has_foo
{
    typedef char (&Yes)[1];
    typedef char (&No)[2];

    template<class U>
    static Yes test(U * data, MyClass* arg1 = 0,
                    typename std::enable_if<std::is_void<
                             decltype(data->foo(*arg1, 1u))
                    >::value>::type * = 0);
    static No test(...);
    static const bool value = sizeof(Yes) == sizeof(has_foo::test((typename std::remove_reference<T>::type*)0));
};

Обратите внимание, что MyClass не должен быть конструируемым по умолчанию или соответствовать какой-либо специальной концепции. Техника работает и с членами шаблона.

Я с нетерпением жду мнения по этому поводу.

Теперь это была милая небольшая головоломка - отличный вопрос!

Вот альтернатива решения Николая Бонелли это не зависит от нестандартного оператора typeof.

К сожалению, он не работает на GCC (MinGW) 3.4.5 или Digital Mars 8.42n, но работает на всех версиях MSVC (включая VC6) и на Comeau C ++.

Более длинный блок комментариев содержит подробную информацию о том, как он работает (или должен работать). Как говорится, я не уверен, какое поведение соответствует стандартам - я хотел бы получить комментарий по этому поводу.

<Ч>

обновление - 7 ноября 2008 г .:

Похоже, что при синтаксически правильном коде поведение MSVC и Comeau C ++ не соответствует стандарту (благодаря Леон Тиммерманс и litb за указание в правильном направлении). Стандарт C ++ 03 гласит следующее:

  

14.6.2 Зависимые имена [temp.dep]

     

Пункт 3

     

В определении шаблона класса   или член шаблона класса, если   базовый класс шаблона класса   зависит от шаблона-параметра,   область действия базового класса не рассматривается   во время поиска безусловного имени либо   в точке определения   шаблон класса или член или во время   создание шаблона класса или   член.

Итак, похоже, что когда MSVC или Comeau рассматривают функцию-член toString() T, выполняющую поиск имени на сайте вызова в doToString(), когда создается экземпляр шаблона, это неверно (даже если на самом деле это поведение, которое я искал в этом случае).

Поведение GCC и Digital Mars выглядит корректно - в обоих случаях функция, не являющаяся членом <=>, связана с вызовом.

Крысы - я думал, что мог бы найти умное решение, вместо этого я обнаружил пару ошибок компилятора ...

<Ч>
#include <iostream>
#include <string>

struct Hello
{
    std::string toString() {
        return "Hello";
    }
};

struct Generic {};


// the following namespace keeps the toString() method out of
//  most everything - except the other stuff in this
//  compilation unit

namespace {
    std::string toString()
    {
        return "toString not defined";
    }

    template <typename T>
    class optionalToStringImpl : public T
    {
    public:
        std::string doToString() {

            // in theory, the name lookup for this call to 
            //  toString() should find the toString() in 
            //  the base class T if one exists, but if one 
            //  doesn't exist in the base class, it'll 
            //  find the free toString() function in 
            //  the private namespace.
            //
            // This theory works for MSVC (all versions
            //  from VC6 to VC9) and Comeau C++, but
            //  does not work with MinGW 3.4.5 or 
            //  Digital Mars 8.42n
            //
            // I'm honestly not sure what the standard says 
            //  is the correct behavior here - it's sort 
            //  of like ADL (Argument Dependent Lookup - 
            //  also known as Koenig Lookup) but without
            //  arguments (except the implied "this" pointer)

            return toString();
        }
    };
}

template <typename T>
std::string optionalToString(T & obj)
{
    // ugly, hacky cast...
    optionalToStringImpl<T>* temp = reinterpret_cast<optionalToStringImpl<T>*>( &obj);

    return temp->doToString();
}



int
main(int argc, char *argv[])
{
    Hello helloObj;
    Generic genericObj;

    std::cout << optionalToString( helloObj) << std::endl;
    std::cout << optionalToString( genericObj) << std::endl;
    return 0;
}

Я изменил решение, предоставленное в https://stackoverflow.com/a/264088/2712152 , чтобы сделать его немного более общий. Кроме того, поскольку он не использует какие-либо новые функции C ++ 11, мы можем использовать его со старыми компиляторами и также должны работать с msvc. Но компиляторы должны позволить C99 использовать это, так как он использует переменные макросы.

Следующий макрос можно использовать для проверки того, имеет ли конкретный класс конкретный typedef или нет.

/** 
 * @class      : HAS_TYPEDEF
 * @brief      : This macro will be used to check if a class has a particular
 * typedef or not.
 * @param typedef_name : Name of Typedef
 * @param name  : Name of struct which is going to be run the test for
 * the given particular typedef specified in typedef_name
 */
#define HAS_TYPEDEF(typedef_name, name)                           \
   template <typename T>                                          \
   struct name {                                                  \
      typedef char yes[1];                                        \
      typedef char no[2];                                         \
      template <typename U>                                       \
      struct type_check;                                          \
      template <typename _1>                                      \
      static yes& chk(type_check<typename _1::typedef_name>*);    \
      template <typename>                                         \
      static no& chk(...);                                        \
      static bool const value = sizeof(chk<T>(0)) == sizeof(yes); \
   }

Следующий макрос можно использовать для проверки того, имеет ли определенный класс конкретную функцию-член или нет с любым заданным числом аргументов.

/** 
 * @class      : HAS_MEM_FUNC
 * @brief      : This macro will be used to check if a class has a particular
 * member function implemented in the public section or not. 
 * @param func : Name of Member Function
 * @param name : Name of struct which is going to be run the test for
 * the given particular member function name specified in func
 * @param return_type: Return type of the member function
 * @param ellipsis(...) : Since this is macro should provide test case for every
 * possible member function we use variadic macros to cover all possibilities
 */
#define HAS_MEM_FUNC(func, name, return_type, ...)                \
   template <typename T>                                          \
   struct name {                                                  \
      typedef return_type (T::*Sign)(__VA_ARGS__);                \
      typedef char yes[1];                                        \
      typedef char no[2];                                         \
      template <typename U, U>                                    \
      struct type_check;                                          \
      template <typename _1>                                      \
      static yes& chk(type_check<Sign, &_1::func>*);              \
      template <typename>                                         \
      static no& chk(...);                                        \
      static bool const value = sizeof(chk<T>(0)) == sizeof(yes); \
   }

Мы можем использовать вышеупомянутые 2 макроса для проверки has_typedef и has_mem_func следующим образом:

class A {
public:
  typedef int check;
  void check_function() {}
};

class B {
public:
  void hello(int a, double b) {}
  void hello() {}
};

HAS_MEM_FUNC(check_function, has_check_function, void, void);
HAS_MEM_FUNC(hello, hello_check, void, int, double);
HAS_MEM_FUNC(hello, hello_void_check, void, void);
HAS_TYPEDEF(check, has_typedef_check);

int main() {
  std::cout << "Check Function A:" << has_check_function<A>::value << std::endl;
  std::cout << "Check Function B:" << has_check_function<B>::value << std::endl;
  std::cout << "Hello Function A:" << hello_check<A>::value << std::endl;
  std::cout << "Hello Function B:" << hello_check<B>::value << std::endl;
  std::cout << "Hello void Function A:" << hello_void_check<A>::value << std::endl;
  std::cout << "Hello void Function B:" << hello_void_check<B>::value << std::endl;
  std::cout << "Check Typedef A:" << has_typedef_check<A>::value << std::endl;
  std::cout << "Check Typedef B:" << has_typedef_check<B>::value << std::endl;
}

Пример использования SFINAE и частичной специализации шаблона путем написания Has_foo проверки концепции:

#include <type_traits>
struct A{};

struct B{ int foo(int a, int b);};

struct C{void foo(int a, int b);};

struct D{int foo();};

struct E: public B{};

// available in C++17 onwards as part of <type_traits>
template<typename...>
using void_t = void;

template<typename T, typename = void> struct Has_foo: std::false_type{};

template<typename T> 
struct Has_foo<T, void_t<
    std::enable_if_t<
        std::is_same<
            int, 
            decltype(std::declval<T>().foo((int)0, (int)0))
        >::value
    >
>>: std::true_type{};


static_assert(not Has_foo<A>::value, "A does not have a foo");
static_assert(Has_foo<B>::value, "B has a foo");
static_assert(not Has_foo<C>::value, "C has a foo with the wrong return. ");
static_assert(not Has_foo<D>::value, "D has a foo with the wrong arguments. ");
static_assert(Has_foo<E>::value, "E has a foo since it inherits from B");

Странно, никто не предложил следующий хороший трюк, который я видел однажды на этом самом сайте:

template <class T>
struct has_foo
{
    struct S { void foo(...); };
    struct derived : S, T {};

    template <typename V, V> struct W {};

    template <typename X>
    char (&test(W<void (X::*)(), &X::foo> *))[1];

    template <typename>
    char (&test(...))[2];

    static const bool value = sizeof(test<derived>(0)) == 1;
};

Вы должны убедиться, что T является классом. Кажется, что двусмысленность в поиске foo является ошибкой замещения. Я заставил его работать на gcc, но не уверен, что он стандартный.

Универсальный шаблон, который может быть использован для проверки, поддерживается ли какая-либо "функция" типом:

#include <type_traits>

template <template <typename> class TypeChecker, typename Type>
struct is_supported
{
    // these structs are used to recognize which version
    // of the two functions was chosen during overload resolution
    struct supported {};
    struct not_supported {};

    // this overload of chk will be ignored by SFINAE principle
    // if TypeChecker<Type_> is invalid type
    template <typename Type_>
    static supported chk(typename std::decay<TypeChecker<Type_>>::type *);

    // ellipsis has the lowest conversion rank, so this overload will be
    // chosen during overload resolution only if the template overload above is ignored
    template <typename Type_>
    static not_supported chk(...);

    // if the template overload of chk is chosen during
    // overload resolution then the feature is supported
    // if the ellipses overload is chosen the the feature is not supported
    static constexpr bool value = std::is_same<decltype(chk<Type>(nullptr)),supported>::value;
};

Шаблон, который проверяет, существует ли метод foo это совместимо с подписью double(const char*)

// if T doesn't have foo method with the signature that allows to compile the bellow
// expression then instantiating this template is Substitution Failure (SF)
// which Is Not An Error (INAE) if this happens during overload resolution
template <typename T>
using has_foo = decltype(double(std::declval<T>().foo(std::declval<const char*>())));

Примеры

// types that support has_foo
struct struct1 { double foo(const char*); };            // exact signature match
struct struct2 { int    foo(const std::string &str); }; // compatible signature
struct struct3 { float  foo(...); };                    // compatible ellipsis signature
struct struct4 { template <typename T>
                 int    foo(T t); };                    // compatible template signature

// types that do not support has_foo
struct struct5 { void        foo(const char*); }; // returns void
struct struct6 { std::string foo(const char*); }; // std::string can't be converted to double
struct struct7 { double      foo(      int *); }; // const char* can't be converted to int*
struct struct8 { double      bar(const char*); }; // there is no foo method

int main()
{
    std::cout << std::boolalpha;

    std::cout << is_supported<has_foo, int    >::value << std::endl; // false
    std::cout << is_supported<has_foo, double >::value << std::endl; // false

    std::cout << is_supported<has_foo, struct1>::value << std::endl; // true
    std::cout << is_supported<has_foo, struct2>::value << std::endl; // true
    std::cout << is_supported<has_foo, struct3>::value << std::endl; // true
    std::cout << is_supported<has_foo, struct4>::value << std::endl; // true

    std::cout << is_supported<has_foo, struct5>::value << std::endl; // false
    std::cout << is_supported<has_foo, struct6>::value << std::endl; // false
    std::cout << is_supported<has_foo, struct7>::value << std::endl; // false
    std::cout << is_supported<has_foo, struct8>::value << std::endl; // false

    return 0;
}

http://coliru.stacked-crooked.com/a/83c6a631ed42cea4

Здесь есть много ответов, но мне не удалось найти версию, которая выполняет упорядочение разрешения методов real , не используя какие-либо новые функции c ++ (только с использованием c ++ 98 особенности).
Примечание. Эта версия протестирована и работает с vc ++ 2013, g ++ 5.2.0 и встроенным компилятором.

Итак, я разработал версию, которая использует только sizeof ():

template<typename T> T declval(void);

struct fake_void { };
template<typename T> T &operator,(T &,fake_void);
template<typename T> T const &operator,(T const &,fake_void);
template<typename T> T volatile &operator,(T volatile &,fake_void);
template<typename T> T const volatile &operator,(T const volatile &,fake_void);

struct yes { char v[1]; };
struct no  { char v[2]; };
template<bool> struct yes_no:yes{};
template<> struct yes_no<false>:no{};

template<typename T>
struct has_awesome_member {
 template<typename U> static yes_no<(sizeof((
   declval<U>().awesome_member(),fake_void()
  ))!=0)> check(int);
 template<typename> static no check(...);
 enum{value=sizeof(check<T>(0)) == sizeof(yes)};
};


struct foo { int awesome_member(void); };
struct bar { };
struct foo_void { void awesome_member(void); };
struct wrong_params { void awesome_member(int); };

static_assert(has_awesome_member<foo>::value,"");
static_assert(!has_awesome_member<bar>::value,"");
static_assert(has_awesome_member<foo_void>::value,"");
static_assert(!has_awesome_member<wrong_params>::value,"");

Демонстрационная версия (с расширенной проверкой типов возвращаемых данных и обходным путем vc ++ 2010): http://cpp.sh/5b2vs

Нет источника, так как я придумал это сам.

При запуске демонстрационной версии Live на компиляторе g ++ обратите внимание, что допустимы размеры массива от 0, что означает, что используемый static_assert не вызовет ошибку компилятора, даже если она не будет выполнена.
Обычно используемый обходной путь заключается в замене «typedef» в макросе на «extern».

Как насчет этого решения?

#include <type_traits>

template <typename U, typename = void> struct hasToString : std::false_type { };

template <typename U>
struct hasToString<U,
  typename std::enable_if<bool(sizeof(&U::toString))>::type
> : std::true_type { };

Вот моя версия, которая обрабатывает все возможные перегрузки функций-членов с произвольной арностью, включая функции-члены шаблона, возможно, с аргументами по умолчанию. Он различает 3 взаимоисключающих сценария при вызове функции-члена некоторого типа класса с заданными типами аргументов: (1) допустимый или (2) неоднозначный или (3) нежизнеспособный. Пример использования:

#include <string>
#include <vector>

HAS_MEM(bar)
HAS_MEM_FUN_CALL(bar)

struct test
{
   void bar(int);
   void bar(double);
   void bar(int,double);

   template < typename T >
   typename std::enable_if< not std::is_integral<T>::value >::type
   bar(const T&, int=0){}

   template < typename T >
   typename std::enable_if< std::is_integral<T>::value >::type
   bar(const std::vector<T>&, T*){}

   template < typename T >
   int bar(const std::string&, int){}
};

Теперь вы можете использовать его следующим образом:

int main(int argc, const char * argv[])
{
   static_assert( has_mem_bar<test>::value , "");

   static_assert( has_valid_mem_fun_call_bar<test(char const*,long)>::value , "");
   static_assert( has_valid_mem_fun_call_bar<test(std::string&,long)>::value , "");

   static_assert( has_valid_mem_fun_call_bar<test(std::vector<int>, int*)>::value , "");
   static_assert( has_no_viable_mem_fun_call_bar<test(std::vector<double>, double*)>::value , "");

   static_assert( has_valid_mem_fun_call_bar<test(int)>::value , "");
   static_assert( std::is_same<void,result_of_mem_fun_call_bar<test(int)>::type>::value , "");

   static_assert( has_valid_mem_fun_call_bar<test(int,double)>::value , "");
   static_assert( not has_valid_mem_fun_call_bar<test(int,double,int)>::value , "");

   static_assert( not has_ambiguous_mem_fun_call_bar<test(double)>::value , "");
   static_assert( has_ambiguous_mem_fun_call_bar<test(unsigned)>::value , "");

   static_assert( has_viable_mem_fun_call_bar<test(unsigned)>::value , "");
   static_assert( has_viable_mem_fun_call_bar<test(int)>::value , "");

   static_assert( has_no_viable_mem_fun_call_bar<test(void)>::value , "");

   return 0;
}

Вот код, написанный на c ++ 11, однако вы можете легко перенести его (с небольшими изменениями) на не-c ++ 11, который имеет расширения typeof (например, gcc). Вы можете заменить макрос HAS_MEM своим собственным.

#pragma once

#if __cplusplus >= 201103

#include <utility>
#include <type_traits>

#define HAS_MEM(mem)                                                                                     \
                                                                                                     \
template < typename T >                                                                               \
struct has_mem_##mem                                                                                  \
{                                                                                                     \
  struct yes {};                                                                                     \
  struct no  {};                                                                                     \
                                                                                                     \
  struct ambiguate_seed { char mem; };                                                               \
  template < typename U > struct ambiguate : U, ambiguate_seed {};                                   \
                                                                                                     \
  template < typename U, typename = decltype(&U::mem) > static constexpr no  test(int);              \
  template < typename                                 > static constexpr yes test(...);              \
                                                                                                     \
  static bool constexpr value = std::is_same<decltype(test< ambiguate<T> >(0)),yes>::value ;         \
  typedef std::integral_constant<bool,value>    type;                                                \
};


#define HAS_MEM_FUN_CALL(memfun)                                                                         \
                                                                                                     \
template < typename Signature >                                                                       \
struct has_valid_mem_fun_call_##memfun;                                                               \
                                                                                                     \
template < typename T, typename... Args >                                                             \
struct has_valid_mem_fun_call_##memfun< T(Args...) >                                                  \
{                                                                                                     \
  struct yes {};                                                                                     \
  struct no  {};                                                                                     \
                                                                                                     \
  template < typename U, bool = has_mem_##memfun<U>::value >                                         \
  struct impl                                                                                        \
  {                                                                                                  \
     template < typename V, typename = decltype(std::declval<V>().memfun(std::declval<Args>()...)) > \
     struct test_result { using type = yes; };                                                       \
                                                                                                     \
     template < typename V > static constexpr typename test_result<V>::type test(int);               \
     template < typename   > static constexpr                            no test(...);               \
                                                                                                     \
     static constexpr bool value = std::is_same<decltype(test<U>(0)),yes>::value;                    \
     using type = std::integral_constant<bool, value>;                                               \
  };                                                                                                 \
                                                                                                     \
  template < typename U >                                                                            \
  struct impl<U,false> : std::false_type {};                                                         \
                                                                                                     \
  static constexpr bool value = impl<T>::value;                                                      \
  using type = std::integral_constant<bool, value>;                                                  \
};                                                                                                    \
                                                                                                     \
template < typename Signature >                                                                       \
struct has_ambiguous_mem_fun_call_##memfun;                                                           \
                                                                                                     \
template < typename T, typename... Args >                                                             \
struct has_ambiguous_mem_fun_call_##memfun< T(Args...) >                                              \
{                                                                                                     \
  struct ambiguate_seed { void memfun(...); };                                                       \
                                                                                                     \
  template < class U, bool = has_mem_##memfun<U>::value >                                            \
  struct ambiguate : U, ambiguate_seed                                                               \
  {                                                                                                  \
    using ambiguate_seed::memfun;                                                                    \
    using U::memfun;                                                                                 \
  };                                                                                                 \
                                                                                                     \
  template < class U >                                                                               \
  struct ambiguate<U,false> : ambiguate_seed {};                                                     \
                                                                                                     \
  static constexpr bool value = not has_valid_mem_fun_call_##memfun< ambiguate<T>(Args...) >::value; \
  using type = std::integral_constant<bool, value>;                                                  \
};                                                                                                    \
                                                                                                     \
template < typename Signature >                                                                       \
struct has_viable_mem_fun_call_##memfun;                                                              \
                                                                                                     \
template < typename T, typename... Args >                                                             \
struct has_viable_mem_fun_call_##memfun< T(Args...) >                                                 \
{                                                                                                     \
  static constexpr bool value = has_valid_mem_fun_call_##memfun<T(Args...)>::value                   \
                             or has_ambiguous_mem_fun_call_##memfun<T(Args...)>::value;              \
  using type = std::integral_constant<bool, value>;                                                  \
};                                                                                                    \
                                                                                                     \
template < typename Signature >                                                                       \
struct has_no_viable_mem_fun_call_##memfun;                                                           \
                                                                                                     \
template < typename T, typename... Args >                                                             \
struct has_no_viable_mem_fun_call_##memfun < T(Args...) >                                             \
{                                                                                                     \
  static constexpr bool value = not has_viable_mem_fun_call_##memfun<T(Args...)>::value;             \
  using type = std::integral_constant<bool, value>;                                                  \
};                                                                                                    \
                                                                                                     \
template < typename Signature >                                                                       \
struct result_of_mem_fun_call_##memfun;                                                               \
                                                                                                     \
template < typename T, typename... Args >                                                             \
struct result_of_mem_fun_call_##memfun< T(Args...) >                                                  \
{                                                                                                     \
  using type = decltype(std::declval<T>().memfun(std::declval<Args>()...));                          \
};

#endif
<Ч>

Вы можете пропустить все метапрограммирование в C ++ 14 и просто написать это, используя fit::conditional из библиотеки Fit :

template<class T>
std::string optionalToString(T* x)
{
    return fit::conditional(
        [](auto* obj) -> decltype(obj->toString()) { return obj->toString(); },
        [](auto*) { return "toString not defined"; }
    )(x);
}

Вы также можете создать функцию непосредственно из лямбд:

FIT_STATIC_LAMBDA_FUNCTION(optionalToString) = fit::conditional(
    [](auto* obj) -> decltype(obj->toString(), std::string()) { return obj->toString(); },
    [](auto*) -> std::string { return "toString not defined"; }
);

Однако, если вы используете компилятор, который не поддерживает общие лямбда-выражения, вам придется написать отдельные функциональные объекты:

struct withToString
{
    template<class T>
    auto operator()(T* obj) const -> decltype(obj->toString(), std::string())
    {
        return obj->toString();
    }
};

struct withoutToString
{
    template<class T>
    std::string operator()(T*) const
    {
        return "toString not defined";
    }
};

FIT_STATIC_FUNCTION(optionalToString) = fit::conditional(
    withToString(),
    withoutToString()
);

Вот пример рабочего кода.

template<typename T>
using toStringFn = decltype(std::declval<const T>().toString());

template <class T, toStringFn<T>* = nullptr>
std::string optionalToString(const T* obj, int)
{
    return obj->toString();
}

template <class T>
std::string optionalToString(const T* obj, long)
{
    return "toString not defined";
}

int main()
{
    A* a;
    B* b;

    std::cout << optionalToString(a, 0) << std::endl; // This is A
    std::cout << optionalToString(b, 0) << std::endl; // toString not defined
}

toStringFn<T>* = nullptr включит функцию, которая принимает дополнительный аргумент int, который имеет приоритет над функцией, которая принимает long при вызове с помощью 0.

Вы можете использовать тот же принцип для функций, который возвращает true, если функция реализована.

template <typename T>
constexpr bool toStringExists(long)
{
    return false;
}

template <typename T, toStringFn<T>* = nullptr>
constexpr bool toStringExists(int)
{
    return true;
}


int main()
{
    A* a;
    B* b;

    std::cout << toStringExists<A>(0) << std::endl; // true
    std::cout << toStringExists<B>(0) << std::endl; // false
}

У меня была похожая проблема:

Шаблонный класс, который может быть получен из нескольких базовых классов, некоторые из которых имеют определенный член, а другие - нет.

Я решил это аналогично " typeof " Ответ Никола Бонелли, но с decltype, поэтому он правильно компилируется и работает на MSVS:

#include <iostream>
#include <string>

struct Generic {};    
struct HasMember 
{
  HasMember() : _a(1) {};
  int _a;
};    

// SFINAE test
template <typename T>
class S : public T
{
public:
  std::string foo (std::string b)
  {
    return foo2<T>(b,0);
  }

protected:
  template <typename T> std::string foo2 (std::string b, decltype (T::_a))
  {
    return b + std::to_string(T::_a);
  }
  template <typename T> std::string foo2 (std::string b, ...)
  {
    return b + "No";
  }
};

int main(int argc, char *argv[])
{
  S<HasMember> d1;
  S<Generic> d2;

  std::cout << d1.foo("HasMember: ") << std::endl;
  std::cout << d2.foo("Generic: ") << std::endl;
  return 0;
}
template<class T>
auto optionalToString(T* obj)
->decltype( obj->toString(), std::string() )
{
     return obj->toString();
}

template<class T>
auto optionalToString(T* obj)
->decltype( std::string() )
{
     throw "Error!";
}
Лицензировано под: CC-BY-SA с атрибуция
Не связан с StackOverflow
scroll top