Pregunta

¿Alguien conoce alguna fórmula para convertir una frecuencia de luz a un valor RGB?

¿Fue útil?

Solución

Aquí hay una explicación detallada de todo el proceso de conversión: http://www.fourmilab.ch/documents/specrend/.¡Código fuente incluido!

Otros consejos

Para los chicos perezosos (como yo), aquí es una implementación en Java de código que se encuentra en respuesta @ user151323 's (es decir, sólo una simple traducción del código de Pascal que se encuentra en Informe de Laboratorio Spectra ):

static private double Gamma = 0.80;
static private double IntensityMax = 255;

/** Taken from Earl F. Glynn's web page:
* <a href="http://www.efg2.com/Lab/ScienceAndEngineering/Spectra.htm">Spectra Lab Report</a>
* */
public static int[] waveLengthToRGB(double Wavelength){
    double factor;
    double Red,Green,Blue;

    if((Wavelength >= 380) && (Wavelength<440)){
        Red = -(Wavelength - 440) / (440 - 380);
        Green = 0.0;
        Blue = 1.0;
    }else if((Wavelength >= 440) && (Wavelength<490)){
        Red = 0.0;
        Green = (Wavelength - 440) / (490 - 440);
        Blue = 1.0;
    }else if((Wavelength >= 490) && (Wavelength<510)){
        Red = 0.0;
        Green = 1.0;
        Blue = -(Wavelength - 510) / (510 - 490);
    }else if((Wavelength >= 510) && (Wavelength<580)){
        Red = (Wavelength - 510) / (580 - 510);
        Green = 1.0;
        Blue = 0.0;
    }else if((Wavelength >= 580) && (Wavelength<645)){
        Red = 1.0;
        Green = -(Wavelength - 645) / (645 - 580);
        Blue = 0.0;
    }else if((Wavelength >= 645) && (Wavelength<781)){
        Red = 1.0;
        Green = 0.0;
        Blue = 0.0;
    }else{
        Red = 0.0;
        Green = 0.0;
        Blue = 0.0;
    };

    // Let the intensity fall off near the vision limits

    if((Wavelength >= 380) && (Wavelength<420)){
        factor = 0.3 + 0.7*(Wavelength - 380) / (420 - 380);
    }else if((Wavelength >= 420) && (Wavelength<701)){
        factor = 1.0;
    }else if((Wavelength >= 701) && (Wavelength<781)){
        factor = 0.3 + 0.7*(780 - Wavelength) / (780 - 700);
    }else{
        factor = 0.0;
    };


    int[] rgb = new int[3];

    // Don't want 0^x = 1 for x <> 0
    rgb[0] = Red==0.0 ? 0 : (int) Math.round(IntensityMax * Math.pow(Red * factor, Gamma));
    rgb[1] = Green==0.0 ? 0 : (int) Math.round(IntensityMax * Math.pow(Green * factor, Gamma));
    rgb[2] = Blue==0.0 ? 0 : (int) Math.round(IntensityMax * Math.pow(Blue * factor, Gamma));

    return rgb;
}

Por cierto, esto funciona muy bien para mí.

Idea general:

  1. Uso funciones de igualación de color CEI para convertir la longitud de onda a de color XYZ .
  2. Convertir RGB a XYZ
  3. componentes
  4. clip para [0..1] y se multiplica por 255 para encajar en el intervalo de bytes sin signo.

Los pasos 1 y 2 puede variar.

Hay varias funciones de igualación de color, disponible como tablas o aproximaciones analíticas como (Sugerido por @Tarc y @Haochen Xie). Las tablas son mejores si se necesita un resultado preсise suave.

No hay un único espacio de color RGB. matrices de transformación Múltiples y diferentes tipos de corrección gamma pueden ser utilizados.

A continuación se muestra el código C # me ocurrió recientemente. Se utiliza la interpolación lineal sobre la mesa "CIE 1964 estándar observador" y matriz sRGB + corrección gamma .

static class RgbCalculator {

    const int
         LEN_MIN = 380,
         LEN_MAX = 780,
         LEN_STEP = 5;

    static readonly double[]
        X = {
                0.000160, 0.000662, 0.002362, 0.007242, 0.019110, 0.043400, 0.084736, 0.140638, 0.204492, 0.264737,
                0.314679, 0.357719, 0.383734, 0.386726, 0.370702, 0.342957, 0.302273, 0.254085, 0.195618, 0.132349,
                0.080507, 0.041072, 0.016172, 0.005132, 0.003816, 0.015444, 0.037465, 0.071358, 0.117749, 0.172953,
                0.236491, 0.304213, 0.376772, 0.451584, 0.529826, 0.616053, 0.705224, 0.793832, 0.878655, 0.951162,
                1.014160, 1.074300, 1.118520, 1.134300, 1.123990, 1.089100, 1.030480, 0.950740, 0.856297, 0.754930,
                0.647467, 0.535110, 0.431567, 0.343690, 0.268329, 0.204300, 0.152568, 0.112210, 0.081261, 0.057930,
                0.040851, 0.028623, 0.019941, 0.013842, 0.009577, 0.006605, 0.004553, 0.003145, 0.002175, 0.001506,
                0.001045, 0.000727, 0.000508, 0.000356, 0.000251, 0.000178, 0.000126, 0.000090, 0.000065, 0.000046,
                0.000033
            },

        Y = {
                0.000017, 0.000072, 0.000253, 0.000769, 0.002004, 0.004509, 0.008756, 0.014456, 0.021391, 0.029497,
                0.038676, 0.049602, 0.062077, 0.074704, 0.089456, 0.106256, 0.128201, 0.152761, 0.185190, 0.219940,
                0.253589, 0.297665, 0.339133, 0.395379, 0.460777, 0.531360, 0.606741, 0.685660, 0.761757, 0.823330,
                0.875211, 0.923810, 0.961988, 0.982200, 0.991761, 0.999110, 0.997340, 0.982380, 0.955552, 0.915175,
                0.868934, 0.825623, 0.777405, 0.720353, 0.658341, 0.593878, 0.527963, 0.461834, 0.398057, 0.339554,
                0.283493, 0.228254, 0.179828, 0.140211, 0.107633, 0.081187, 0.060281, 0.044096, 0.031800, 0.022602,
                0.015905, 0.011130, 0.007749, 0.005375, 0.003718, 0.002565, 0.001768, 0.001222, 0.000846, 0.000586,
                0.000407, 0.000284, 0.000199, 0.000140, 0.000098, 0.000070, 0.000050, 0.000036, 0.000025, 0.000018,
                0.000013
            },

        Z = {
                0.000705, 0.002928, 0.010482, 0.032344, 0.086011, 0.197120, 0.389366, 0.656760, 0.972542, 1.282500,
                1.553480, 1.798500, 1.967280, 2.027300, 1.994800, 1.900700, 1.745370, 1.554900, 1.317560, 1.030200,
                0.772125, 0.570060, 0.415254, 0.302356, 0.218502, 0.159249, 0.112044, 0.082248, 0.060709, 0.043050,
                0.030451, 0.020584, 0.013676, 0.007918, 0.003988, 0.001091, 0.000000, 0.000000, 0.000000, 0.000000,
                0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
                0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
                0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
                0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
                0.000000
            };

    static readonly double[]
        MATRIX_SRGB_D65 = {
             3.2404542, -1.5371385, -0.4985314,
            -0.9692660,  1.8760108,  0.0415560,
             0.0556434, -0.2040259,  1.0572252
        };

    public static byte[] Calc(double len) {
        if(len < LEN_MIN || len > LEN_MAX)
            return new byte[3];

        len -= LEN_MIN;
        var index = (int)Math.Floor(len / LEN_STEP);
        var offset = len - LEN_STEP * index;

        var x = Interpolate(X, index, offset);
        var y = Interpolate(Y, index, offset);
        var z = Interpolate(Z, index, offset);

        var m = MATRIX_SRGB_D65;

        var r = m[0] * x + m[1] * y + m[2] * z;
        var g = m[3] * x + m[4] * y + m[5] * z;
        var b = m[6] * x + m[7] * y + m[8] * z;

        r = Clip(GammaCorrect_sRGB(r));
        g = Clip(GammaCorrect_sRGB(g));
        b = Clip(GammaCorrect_sRGB(b));

        return new[] { 
            (byte)(255 * r),
            (byte)(255 * g),
            (byte)(255 * b)
        };
    }

    static double Interpolate(double[] values, int index, double offset) {
        if(offset == 0)
            return values[index];

        var x0 = index * LEN_STEP;
        var x1 = x0 + LEN_STEP;
        var y0 = values[index];
        var y1 = values[1 + index];

        return y0 + offset * (y1 - y0) / (x1 - x0);
    }

    static double GammaCorrect_sRGB(double c) {
        if(c <= 0.0031308)
            return 12.92 * c;

        var a = 0.055;
        return (1 + a) * Math.Pow(c, 1 / 2.4) - a;
    }

    static double Clip(double c) {
        if(c < 0)
            return 0;
        if(c > 1)
            return 1;
        return c;
    }
}

Resultado del rango 400-700 nm:

 introducir descripción de la imagen aquí

A pesar de que esta es una cuestión de edad y ya consigue un puñado de buenas respuestas, cuando traté de poner en práctica dicha funcionalidad de conversión en mi solicitud que no estaba satisfecho con los algoritmos ya enumerados aquí e hice mi propia investigación, que me dio un buen resultado . Así que voy a publicar una nueva respuesta.

Después de algunos Investigaciones me encontré con este papel, simples aproximaciones analíticas a las funciones de igualación de color CIE XYZ , y trató de adoptar el algoritmo de ajuste por tramos de Gauss multilobar introducido en mi solicitud. El documento solamente describe las funciones para convertir una longitud de onda a la XYZ valora , así que implementa la función de convertir XYZ a RGB en el espacio de color sRGB y las ha combinado. El resultado es fantástico y vale la pena compartir:

/**
 * Convert a wavelength in the visible light spectrum to a RGB color value that is suitable to be displayed on a
 * monitor
 *
 * @param wavelength wavelength in nm
 * @return RGB color encoded in int. each color is represented with 8 bits and has a layout of
 * 00000000RRRRRRRRGGGGGGGGBBBBBBBB where MSB is at the leftmost
 */
public static int wavelengthToRGB(double wavelength){
    double[] xyz = cie1931WavelengthToXYZFit(wavelength);
    double[] rgb = srgbXYZ2RGB(xyz);

    int c = 0;
    c |= (((int) (rgb[0] * 0xFF)) & 0xFF) << 16;
    c |= (((int) (rgb[1] * 0xFF)) & 0xFF) << 8;
    c |= (((int) (rgb[2] * 0xFF)) & 0xFF) << 0;

    return c;
}

/**
 * Convert XYZ to RGB in the sRGB color space
 * <p>
 * The conversion matrix and color component transfer function is taken from http://www.color.org/srgb.pdf, which
 * follows the International Electrotechnical Commission standard IEC 61966-2-1 "Multimedia systems and equipment -
 * Colour measurement and management - Part 2-1: Colour management - Default RGB colour space - sRGB"
 *
 * @param xyz XYZ values in a double array in the order of X, Y, Z. each value in the range of [0.0, 1.0]
 * @return RGB values in a double array, in the order of R, G, B. each value in the range of [0.0, 1.0]
 */
public static double[] srgbXYZ2RGB(double[] xyz) {
    double x = xyz[0];
    double y = xyz[1];
    double z = xyz[2];

    double rl =  3.2406255 * x + -1.537208  * y + -0.4986286 * z;
    double gl = -0.9689307 * x +  1.8757561 * y +  0.0415175 * z;
    double bl =  0.0557101 * x + -0.2040211 * y +  1.0569959 * z;

    return new double[] {
            srgbXYZ2RGBPostprocess(rl),
            srgbXYZ2RGBPostprocess(gl),
            srgbXYZ2RGBPostprocess(bl)
    };
}

/**
 * helper function for {@link #srgbXYZ2RGB(double[])}
 */
private static double srgbXYZ2RGBPostprocess(double c) {
    // clip if c is out of range
    c = c > 1 ? 1 : (c < 0 ? 0 : c);

    // apply the color component transfer function
    c = c <= 0.0031308 ? c * 12.92 : 1.055 * Math.pow(c, 1. / 2.4) - 0.055;

    return c;
}

/**
 * A multi-lobe, piecewise Gaussian fit of CIE 1931 XYZ Color Matching Functions by Wyman el al. from Nvidia. The
 * code here is adopted from the Listing 1 of the paper authored by Wyman et al.
 * <p>
 * Reference: Chris Wyman, Peter-Pike Sloan, and Peter Shirley, Simple Analytic Approximations to the CIE XYZ Color
 * Matching Functions, Journal of Computer Graphics Techniques (JCGT), vol. 2, no. 2, 1-11, 2013.
 *
 * @param wavelength wavelength in nm
 * @return XYZ in a double array in the order of X, Y, Z. each value in the range of [0.0, 1.0]
 */
public static double[] cie1931WavelengthToXYZFit(double wavelength) {
    double wave = wavelength;

    double x;
    {
        double t1 = (wave - 442.0) * ((wave < 442.0) ? 0.0624 : 0.0374);
        double t2 = (wave - 599.8) * ((wave < 599.8) ? 0.0264 : 0.0323);
        double t3 = (wave - 501.1) * ((wave < 501.1) ? 0.0490 : 0.0382);

        x =   0.362 * Math.exp(-0.5 * t1 * t1)
            + 1.056 * Math.exp(-0.5 * t2 * t2)
            - 0.065 * Math.exp(-0.5 * t3 * t3);
    }

    double y;
    {
        double t1 = (wave - 568.8) * ((wave < 568.8) ? 0.0213 : 0.0247);
        double t2 = (wave - 530.9) * ((wave < 530.9) ? 0.0613 : 0.0322);

        y =   0.821 * Math.exp(-0.5 * t1 * t1)
            + 0.286 * Math.exp(-0.5 * t2 * t2);
    }

    double z;
    {
        double t1 = (wave - 437.0) * ((wave < 437.0) ? 0.0845 : 0.0278);
        double t2 = (wave - 459.0) * ((wave < 459.0) ? 0.0385 : 0.0725);

        z =   1.217 * Math.exp(-0.5 * t1 * t1)
            + 0.681 * Math.exp(-0.5 * t2 * t2);
    }

    return new double[] { x, y, z };
}

mi código está escrito en Java 8, pero no debería ser difícil de portarlo a bajar versiones de Java y otros lenguajes.

Estamos hablando de la conversión de longitud de onda a un valor RGB.

Mira, probablemente responderá a su pregunta. Tu tiene una utilidad para hacer esto con el código fuente, así como una explicación.

WaveLengthToRGB

supongo que también podría seguir mi comentario con una respuesta formal. La mejor opción es utilizar la espacio de color HSV - aunque el matiz representa la longitud de onda no es un uno-a-uno comparación.

Hice un ajuste lineal de los valores de tono conocidos y frecuencias (deserción rojo y violeta porque se extienden tan lejos en valores de frecuencia que sesgan las cosas un poco) y me dieron una ecuación de conversión áspera.

Dice así
frecuencia (en THz) = 474 + (3/4) (Hue ángulo (en grados))

He tratado de mirar alrededor y ver si alguien ha llegado con esta ecuación, pero no he encontrado nada en mayo de 2010.

Método 1

Esto se limpia poco hacia arriba y probado versión de @ Haochen-Xie C ++ 11. También he añadido una función que convierte el valor de 0 a 1 a una longitud de onda en el espectro visible que se puede utilizar con este método. Usted sólo puede poner a continuación en un archivo de cabecera y utilizarlo sin ningún tipo de dependencias. Esta versión se mantendrá aquí .

#ifndef common_utils_OnlineStats_hpp
#define common_utils_OnlineStats_hpp

namespace common_utils {

class ColorUtils {
public:

    static void valToRGB(double val0To1, unsigned char& r, unsigned char& g, unsigned char& b)
    {
        //actual visible spectrum is 375 to 725 but outside of 400-700 things become too dark
        wavelengthToRGB(val0To1 * (700 - 400) + 400, r, g, b);
    }

    /**
    * Convert a wavelength in the visible light spectrum to a RGB color value that is suitable to be displayed on a
    * monitor
    *
    * @param wavelength wavelength in nm
    * @return RGB color encoded in int. each color is represented with 8 bits and has a layout of
    * 00000000RRRRRRRRGGGGGGGGBBBBBBBB where MSB is at the leftmost
    */
    static void wavelengthToRGB(double wavelength, unsigned char& r, unsigned char& g, unsigned char& b) {
        double x, y, z;
        cie1931WavelengthToXYZFit(wavelength, x, y, z);
        double dr, dg, db;
        srgbXYZ2RGB(x, y, z, dr, dg, db);

        r = static_cast<unsigned char>(static_cast<int>(dr * 0xFF) & 0xFF);
        g = static_cast<unsigned char>(static_cast<int>(dg * 0xFF) & 0xFF);
        b = static_cast<unsigned char>(static_cast<int>(db * 0xFF) & 0xFF);
    }

    /**
    * Convert XYZ to RGB in the sRGB color space
    * <p>
    * The conversion matrix and color component transfer function is taken from http://www.color.org/srgb.pdf, which
    * follows the International Electrotechnical Commission standard IEC 61966-2-1 "Multimedia systems and equipment -
    * Colour measurement and management - Part 2-1: Colour management - Default RGB colour space - sRGB"
    *
    * @param xyz XYZ values in a double array in the order of X, Y, Z. each value in the range of [0.0, 1.0]
    * @return RGB values in a double array, in the order of R, G, B. each value in the range of [0.0, 1.0]
    */
    static void srgbXYZ2RGB(double x, double y, double z, double& r, double& g, double& b) {
        double rl = 3.2406255 * x + -1.537208  * y + -0.4986286 * z;
        double gl = -0.9689307 * x + 1.8757561 * y + 0.0415175 * z;
        double bl = 0.0557101 * x + -0.2040211 * y + 1.0569959 * z;

        r = srgbXYZ2RGBPostprocess(rl);
        g = srgbXYZ2RGBPostprocess(gl);
        b = srgbXYZ2RGBPostprocess(bl);
    }

    /**
    * helper function for {@link #srgbXYZ2RGB(double[])}
    */
    static double srgbXYZ2RGBPostprocess(double c) {
        // clip if c is out of range
        c = c > 1 ? 1 : (c < 0 ? 0 : c);

        // apply the color component transfer function
        c = c <= 0.0031308 ? c * 12.92 : 1.055 * std::pow(c, 1. / 2.4) - 0.055;

        return c;
    }

    /**
    * A multi-lobe, piecewise Gaussian fit of CIE 1931 XYZ Color Matching Functions by Wyman el al. from Nvidia. The
    * code here is adopted from the Listing 1 of the paper authored by Wyman et al.
    * <p>
    * Reference: Chris Wyman, Peter-Pike Sloan, and Peter Shirley, Simple Analytic Approximations to the CIE XYZ Color
    * Matching Functions, Journal of Computer Graphics Techniques (JCGT), vol. 2, no. 2, 1-11, 2013.
    *
    * @param wavelength wavelength in nm
    * @return XYZ in a double array in the order of X, Y, Z. each value in the range of [0.0, 1.0]
    */
    static void cie1931WavelengthToXYZFit(double wavelength, double& x, double& y, double& z) {
        double wave = wavelength;

        {
            double t1 = (wave - 442.0) * ((wave < 442.0) ? 0.0624 : 0.0374);
            double t2 = (wave - 599.8) * ((wave < 599.8) ? 0.0264 : 0.0323);
            double t3 = (wave - 501.1) * ((wave < 501.1) ? 0.0490 : 0.0382);

            x = 0.362 * std::exp(-0.5 * t1 * t1)
                + 1.056 * std::exp(-0.5 * t2 * t2)
                - 0.065 * std::exp(-0.5 * t3 * t3);
        }

        {
            double t1 = (wave - 568.8) * ((wave < 568.8) ? 0.0213 : 0.0247);
            double t2 = (wave - 530.9) * ((wave < 530.9) ? 0.0613 : 0.0322);

            y = 0.821 * std::exp(-0.5 * t1 * t1)
                + 0.286 * std::exp(-0.5 * t2 * t2);
        }

        {
            double t1 = (wave - 437.0) * ((wave < 437.0) ? 0.0845 : 0.0278);
            double t2 = (wave - 459.0) * ((wave < 459.0) ? 0.0385 : 0.0725);

            z = 1.217 * std::exp(-0.5 * t1 * t1)
                + 0.681 * std::exp(-0.5 * t2 * t2);
        }
    }

};

} //namespace

#endif

La trama de colores de 375 nm a 725nm se parece a continuación:

introducir descripción de la imagen aquí

Un problema con este método es el hecho de que funciona sólo entre 400-700 nm y fuera de eso todo el mundo y cae al negro. Otra cuestión es azul más estrecho.

Para la comparación, a continuación son los colores de la visión de preguntas frecuentes en maxmax.com:

introducir descripción de la imagen aquí

He utilizado este visualizar mapa de profundidad, donde cada píxel representa un valor de profundidad en metros y esto se parece a continuación:

introducir descripción de la imagen aquí

Método 2

Esto se implementa como parte de bitmap_image una sola fila sólo de encabezado de la biblioteca por Aeash Partow:

inline rgb_t convert_wave_length_nm_to_rgb(const double wave_length_nm)
{
   // Credits: Dan Bruton http://www.physics.sfasu.edu/astro/color.html
   double red   = 0.0;
   double green = 0.0;
   double blue  = 0.0;

   if ((380.0 <= wave_length_nm) && (wave_length_nm <= 439.0))
   {
      red   = -(wave_length_nm - 440.0) / (440.0 - 380.0);
      green = 0.0;
      blue  = 1.0;
   }
   else if ((440.0 <= wave_length_nm) && (wave_length_nm <= 489.0))
   {
      red   = 0.0;
      green = (wave_length_nm - 440.0) / (490.0 - 440.0);
      blue  = 1.0;
   }
   else if ((490.0 <= wave_length_nm) && (wave_length_nm <= 509.0))
   {
      red   = 0.0;
      green = 1.0;
      blue  = -(wave_length_nm - 510.0) / (510.0 - 490.0);
   }
   else if ((510.0 <= wave_length_nm) && (wave_length_nm <= 579.0))
   {
      red   = (wave_length_nm - 510.0) / (580.0 - 510.0);
      green = 1.0;
      blue  = 0.0;
   }
   else if ((580.0 <= wave_length_nm) && (wave_length_nm <= 644.0))
   {
      red   = 1.0;
      green = -(wave_length_nm - 645.0) / (645.0 - 580.0);
      blue  = 0.0;
   }
   else if ((645.0 <= wave_length_nm) && (wave_length_nm <= 780.0))
   {
      red   = 1.0;
      green = 0.0;
      blue  = 0.0;
   }

   double factor = 0.0;

   if ((380.0 <= wave_length_nm) && (wave_length_nm <= 419.0))
      factor = 0.3 + 0.7 * (wave_length_nm - 380.0) / (420.0 - 380.0);
   else if ((420.0 <= wave_length_nm) && (wave_length_nm <= 700.0))
      factor = 1.0;
   else if ((701.0 <= wave_length_nm) && (wave_length_nm <= 780.0))
      factor = 0.3 + 0.7 * (780.0 - wave_length_nm) / (780.0 - 700.0);
   else
      factor = 0.0;

   rgb_t result;

   const double gamma         =   0.8;
   const double intensity_max = 255.0;

   #define round(d) std::floor(d + 0.5)

   result.red   = static_cast<unsigned char>((red   == 0.0) ? red   : round(intensity_max * std::pow(red   * factor, gamma)));
   result.green = static_cast<unsigned char>((green == 0.0) ? green : round(intensity_max * std::pow(green * factor, gamma)));
   result.blue  = static_cast<unsigned char>((blue  == 0.0) ? blue  : round(intensity_max * std::pow(blue  * factor, gamma)));

   #undef round

   return result;
}

Parcela de longitudes de onda de 375-725nm se parece a continuación:

introducir descripción de la imagen aquí

Así que esto es más fácil de usar en 400-725nm. Cuando visualizo mismo mapa de profundidad como en el método 1, llego a continuación. No es una cuestión obvia de esas líneas negras que creo que indica error menor en el código que no he mirado más profundamente. También violetas son poco más estrecho en este método que causa menos contraste para objetos lejanos.

introducir descripción de la imagen aquí

Licenciado bajo: CC-BY-SA con atribución
No afiliado a StackOverflow
scroll top