Question

Personne ne sait de toute formule pour convertir une lumière de fréquence à une valeur RVB?

Était-ce utile?

La solution

Voici une explication détaillée de l'ensemble du processus de conversion: http://www.fourmilab.ch/documents/specrend/.Le code Source est inclus!

Autres conseils

Pour les gars paresseux (comme moi), voici une implémentation en java du code trouvé dans @ réponse de user151323 (c'est juste une simple traduction à partir du code trouvé dans pascals Spectra Rapport Lab de ):

static private double Gamma = 0.80;
static private double IntensityMax = 255;

/** Taken from Earl F. Glynn's web page:
* <a href="http://www.efg2.com/Lab/ScienceAndEngineering/Spectra.htm">Spectra Lab Report</a>
* */
public static int[] waveLengthToRGB(double Wavelength){
    double factor;
    double Red,Green,Blue;

    if((Wavelength >= 380) && (Wavelength<440)){
        Red = -(Wavelength - 440) / (440 - 380);
        Green = 0.0;
        Blue = 1.0;
    }else if((Wavelength >= 440) && (Wavelength<490)){
        Red = 0.0;
        Green = (Wavelength - 440) / (490 - 440);
        Blue = 1.0;
    }else if((Wavelength >= 490) && (Wavelength<510)){
        Red = 0.0;
        Green = 1.0;
        Blue = -(Wavelength - 510) / (510 - 490);
    }else if((Wavelength >= 510) && (Wavelength<580)){
        Red = (Wavelength - 510) / (580 - 510);
        Green = 1.0;
        Blue = 0.0;
    }else if((Wavelength >= 580) && (Wavelength<645)){
        Red = 1.0;
        Green = -(Wavelength - 645) / (645 - 580);
        Blue = 0.0;
    }else if((Wavelength >= 645) && (Wavelength<781)){
        Red = 1.0;
        Green = 0.0;
        Blue = 0.0;
    }else{
        Red = 0.0;
        Green = 0.0;
        Blue = 0.0;
    };

    // Let the intensity fall off near the vision limits

    if((Wavelength >= 380) && (Wavelength<420)){
        factor = 0.3 + 0.7*(Wavelength - 380) / (420 - 380);
    }else if((Wavelength >= 420) && (Wavelength<701)){
        factor = 1.0;
    }else if((Wavelength >= 701) && (Wavelength<781)){
        factor = 0.3 + 0.7*(780 - Wavelength) / (780 - 700);
    }else{
        factor = 0.0;
    };


    int[] rgb = new int[3];

    // Don't want 0^x = 1 for x <> 0
    rgb[0] = Red==0.0 ? 0 : (int) Math.round(IntensityMax * Math.pow(Red * factor, Gamma));
    rgb[1] = Green==0.0 ? 0 : (int) Math.round(IntensityMax * Math.pow(Green * factor, Gamma));
    rgb[2] = Blue==0.0 ? 0 : (int) Math.round(IntensityMax * Math.pow(Blue * factor, Gamma));

    return rgb;
}

Par ailleurs, cela fonctionne très bien pour moi.

Idée générale:

  1. fonctions de correspondance de couleurs CEI pour convertir la longueur d'onde de couleur XYZ .
  2. Convertir XYZ RGB
  3. composants du clip à [0..1] et multiplier par 255 pour tenir dans l'intervalle d'octet non signé.

Les étapes 1 et 2 peuvent varier.

Il existe plusieurs fonctions de correspondance des couleurs, disponibles sous forme de tableaux ou approximations analytiques (suggéraient par @Tarc et @Haochen Xie). Les tables sont mieux si vous avez besoin d'un résultat preсise lisse.

Il n'y a pas un seul espace de couleur RVB. matrices de transformation multiples et différents types de correction gamma peuvent être utilisés.

Voici le code C # Je suis venu récemment. Il utilise une interpolation linéaire sur la table "CIE 1964 observateur standard" et matrice sRGB + gamma correction .

static class RgbCalculator {

    const int
         LEN_MIN = 380,
         LEN_MAX = 780,
         LEN_STEP = 5;

    static readonly double[]
        X = {
                0.000160, 0.000662, 0.002362, 0.007242, 0.019110, 0.043400, 0.084736, 0.140638, 0.204492, 0.264737,
                0.314679, 0.357719, 0.383734, 0.386726, 0.370702, 0.342957, 0.302273, 0.254085, 0.195618, 0.132349,
                0.080507, 0.041072, 0.016172, 0.005132, 0.003816, 0.015444, 0.037465, 0.071358, 0.117749, 0.172953,
                0.236491, 0.304213, 0.376772, 0.451584, 0.529826, 0.616053, 0.705224, 0.793832, 0.878655, 0.951162,
                1.014160, 1.074300, 1.118520, 1.134300, 1.123990, 1.089100, 1.030480, 0.950740, 0.856297, 0.754930,
                0.647467, 0.535110, 0.431567, 0.343690, 0.268329, 0.204300, 0.152568, 0.112210, 0.081261, 0.057930,
                0.040851, 0.028623, 0.019941, 0.013842, 0.009577, 0.006605, 0.004553, 0.003145, 0.002175, 0.001506,
                0.001045, 0.000727, 0.000508, 0.000356, 0.000251, 0.000178, 0.000126, 0.000090, 0.000065, 0.000046,
                0.000033
            },

        Y = {
                0.000017, 0.000072, 0.000253, 0.000769, 0.002004, 0.004509, 0.008756, 0.014456, 0.021391, 0.029497,
                0.038676, 0.049602, 0.062077, 0.074704, 0.089456, 0.106256, 0.128201, 0.152761, 0.185190, 0.219940,
                0.253589, 0.297665, 0.339133, 0.395379, 0.460777, 0.531360, 0.606741, 0.685660, 0.761757, 0.823330,
                0.875211, 0.923810, 0.961988, 0.982200, 0.991761, 0.999110, 0.997340, 0.982380, 0.955552, 0.915175,
                0.868934, 0.825623, 0.777405, 0.720353, 0.658341, 0.593878, 0.527963, 0.461834, 0.398057, 0.339554,
                0.283493, 0.228254, 0.179828, 0.140211, 0.107633, 0.081187, 0.060281, 0.044096, 0.031800, 0.022602,
                0.015905, 0.011130, 0.007749, 0.005375, 0.003718, 0.002565, 0.001768, 0.001222, 0.000846, 0.000586,
                0.000407, 0.000284, 0.000199, 0.000140, 0.000098, 0.000070, 0.000050, 0.000036, 0.000025, 0.000018,
                0.000013
            },

        Z = {
                0.000705, 0.002928, 0.010482, 0.032344, 0.086011, 0.197120, 0.389366, 0.656760, 0.972542, 1.282500,
                1.553480, 1.798500, 1.967280, 2.027300, 1.994800, 1.900700, 1.745370, 1.554900, 1.317560, 1.030200,
                0.772125, 0.570060, 0.415254, 0.302356, 0.218502, 0.159249, 0.112044, 0.082248, 0.060709, 0.043050,
                0.030451, 0.020584, 0.013676, 0.007918, 0.003988, 0.001091, 0.000000, 0.000000, 0.000000, 0.000000,
                0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
                0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
                0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
                0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
                0.000000
            };

    static readonly double[]
        MATRIX_SRGB_D65 = {
             3.2404542, -1.5371385, -0.4985314,
            -0.9692660,  1.8760108,  0.0415560,
             0.0556434, -0.2040259,  1.0572252
        };

    public static byte[] Calc(double len) {
        if(len < LEN_MIN || len > LEN_MAX)
            return new byte[3];

        len -= LEN_MIN;
        var index = (int)Math.Floor(len / LEN_STEP);
        var offset = len - LEN_STEP * index;

        var x = Interpolate(X, index, offset);
        var y = Interpolate(Y, index, offset);
        var z = Interpolate(Z, index, offset);

        var m = MATRIX_SRGB_D65;

        var r = m[0] * x + m[1] * y + m[2] * z;
        var g = m[3] * x + m[4] * y + m[5] * z;
        var b = m[6] * x + m[7] * y + m[8] * z;

        r = Clip(GammaCorrect_sRGB(r));
        g = Clip(GammaCorrect_sRGB(g));
        b = Clip(GammaCorrect_sRGB(b));

        return new[] { 
            (byte)(255 * r),
            (byte)(255 * g),
            (byte)(255 * b)
        };
    }

    static double Interpolate(double[] values, int index, double offset) {
        if(offset == 0)
            return values[index];

        var x0 = index * LEN_STEP;
        var x1 = x0 + LEN_STEP;
        var y0 = values[index];
        var y1 = values[1 + index];

        return y0 + offset * (y1 - y0) / (x1 - x0);
    }

    static double GammaCorrect_sRGB(double c) {
        if(c <= 0.0031308)
            return 12.92 * c;

        var a = 0.055;
        return (1 + a) * Math.Pow(c, 1 / 2.4) - a;
    }

    static double Clip(double c) {
        if(c < 0)
            return 0;
        if(c > 1)
            return 1;
        return c;
    }
}

Résultat dans la gamme de 400 à 700 nm:

 ici

Bien que ce soit une question ancienne et obtient déjà une poignée de bonnes réponses, quand j'ai essayé de mettre en œuvre des fonctionnalités telles de conversion dans ma demande je ne suis pas satisfait des algorithmes déjà mentionnés ici et fait mes propres recherches, ce qui m'a donné quelques bons résultats . Donc, je vais poster une nouvelle réponse.

Après quelques je suis tombé sur Essais cet article, simples analytiques Approximations aux fonctions de correspondance des couleurs CIE XYZ , et a essayé d'adopter l'algorithme de forme gaussienne multi-lobes piecewise introduit dans ma demande. Le document décrit uniquement les fonctions pour convertir une longueur d'onde à la XYZ valeurs correspondant, je mis en oeuvre une fonction de conversion XYZ pour RGB dans l'espace couleur sRGB et les combinés. Le résultat est fantastique partage et de la valeur:

/**
 * Convert a wavelength in the visible light spectrum to a RGB color value that is suitable to be displayed on a
 * monitor
 *
 * @param wavelength wavelength in nm
 * @return RGB color encoded in int. each color is represented with 8 bits and has a layout of
 * 00000000RRRRRRRRGGGGGGGGBBBBBBBB where MSB is at the leftmost
 */
public static int wavelengthToRGB(double wavelength){
    double[] xyz = cie1931WavelengthToXYZFit(wavelength);
    double[] rgb = srgbXYZ2RGB(xyz);

    int c = 0;
    c |= (((int) (rgb[0] * 0xFF)) & 0xFF) << 16;
    c |= (((int) (rgb[1] * 0xFF)) & 0xFF) << 8;
    c |= (((int) (rgb[2] * 0xFF)) & 0xFF) << 0;

    return c;
}

/**
 * Convert XYZ to RGB in the sRGB color space
 * <p>
 * The conversion matrix and color component transfer function is taken from http://www.color.org/srgb.pdf, which
 * follows the International Electrotechnical Commission standard IEC 61966-2-1 "Multimedia systems and equipment -
 * Colour measurement and management - Part 2-1: Colour management - Default RGB colour space - sRGB"
 *
 * @param xyz XYZ values in a double array in the order of X, Y, Z. each value in the range of [0.0, 1.0]
 * @return RGB values in a double array, in the order of R, G, B. each value in the range of [0.0, 1.0]
 */
public static double[] srgbXYZ2RGB(double[] xyz) {
    double x = xyz[0];
    double y = xyz[1];
    double z = xyz[2];

    double rl =  3.2406255 * x + -1.537208  * y + -0.4986286 * z;
    double gl = -0.9689307 * x +  1.8757561 * y +  0.0415175 * z;
    double bl =  0.0557101 * x + -0.2040211 * y +  1.0569959 * z;

    return new double[] {
            srgbXYZ2RGBPostprocess(rl),
            srgbXYZ2RGBPostprocess(gl),
            srgbXYZ2RGBPostprocess(bl)
    };
}

/**
 * helper function for {@link #srgbXYZ2RGB(double[])}
 */
private static double srgbXYZ2RGBPostprocess(double c) {
    // clip if c is out of range
    c = c > 1 ? 1 : (c < 0 ? 0 : c);

    // apply the color component transfer function
    c = c <= 0.0031308 ? c * 12.92 : 1.055 * Math.pow(c, 1. / 2.4) - 0.055;

    return c;
}

/**
 * A multi-lobe, piecewise Gaussian fit of CIE 1931 XYZ Color Matching Functions by Wyman el al. from Nvidia. The
 * code here is adopted from the Listing 1 of the paper authored by Wyman et al.
 * <p>
 * Reference: Chris Wyman, Peter-Pike Sloan, and Peter Shirley, Simple Analytic Approximations to the CIE XYZ Color
 * Matching Functions, Journal of Computer Graphics Techniques (JCGT), vol. 2, no. 2, 1-11, 2013.
 *
 * @param wavelength wavelength in nm
 * @return XYZ in a double array in the order of X, Y, Z. each value in the range of [0.0, 1.0]
 */
public static double[] cie1931WavelengthToXYZFit(double wavelength) {
    double wave = wavelength;

    double x;
    {
        double t1 = (wave - 442.0) * ((wave < 442.0) ? 0.0624 : 0.0374);
        double t2 = (wave - 599.8) * ((wave < 599.8) ? 0.0264 : 0.0323);
        double t3 = (wave - 501.1) * ((wave < 501.1) ? 0.0490 : 0.0382);

        x =   0.362 * Math.exp(-0.5 * t1 * t1)
            + 1.056 * Math.exp(-0.5 * t2 * t2)
            - 0.065 * Math.exp(-0.5 * t3 * t3);
    }

    double y;
    {
        double t1 = (wave - 568.8) * ((wave < 568.8) ? 0.0213 : 0.0247);
        double t2 = (wave - 530.9) * ((wave < 530.9) ? 0.0613 : 0.0322);

        y =   0.821 * Math.exp(-0.5 * t1 * t1)
            + 0.286 * Math.exp(-0.5 * t2 * t2);
    }

    double z;
    {
        double t1 = (wave - 437.0) * ((wave < 437.0) ? 0.0845 : 0.0278);
        double t2 = (wave - 459.0) * ((wave < 459.0) ? 0.0385 : 0.0725);

        z =   1.217 * Math.exp(-0.5 * t1 * t1)
            + 0.681 * Math.exp(-0.5 * t2 * t2);
    }

    return new double[] { x, y, z };
}

mon code est écrit en Java 8, mais il ne devrait pas être difficile de le porter pour abaisser les versions de Java et d'autres langues.

Vous parlez de la conversion longueur d'onde à une valeur RGB.

Regardez ici, va probablement répondre à votre question. Thy ont une utilité pour ce faire avec le code source ainsi que quelques explications.

WaveLengthToRGB

Je suppose que je pourrais aussi bien suivre mon commentaire avec une réponse formelle. La meilleure option est d'utiliser le espace HSV couleur - si la teinte représente la longueur d'onde, il est pas une à une comparaison.

Je l'ai fait un ajustement linéaire des valeurs et des fréquences de teinte connues (décrochage rouge et le violet parce qu'ils étendent jusqu'à présent des valeurs de fréquences qu'ils biaiser les choses un peu) et je suis arrivé une équation de conversion grossière.

Il va comme
fréquence (en THz) = 474 + (3/4) (Hue Angle (en degrés))

J'ai essayé de regarder autour et voir si quelqu'un est venu avec cette équation, mais je ne l'ai pas trouvé quoi que ce soit de mai 2010.

Méthode 1

Ceci est peu nettoyé et testé la version 11 de C ++ @ Haochen-xie. Je également ajouté une fonction qui convertit la valeur de 0 à 1 pour une longueur d'onde dans le spectre visible qui est utilisable avec cette méthode. Vous pouvez simplement mettre ci-dessous dans un fichier d'en-tête et de l'utiliser sans dépendances. Cette version sera maintenue .

#ifndef common_utils_OnlineStats_hpp
#define common_utils_OnlineStats_hpp

namespace common_utils {

class ColorUtils {
public:

    static void valToRGB(double val0To1, unsigned char& r, unsigned char& g, unsigned char& b)
    {
        //actual visible spectrum is 375 to 725 but outside of 400-700 things become too dark
        wavelengthToRGB(val0To1 * (700 - 400) + 400, r, g, b);
    }

    /**
    * Convert a wavelength in the visible light spectrum to a RGB color value that is suitable to be displayed on a
    * monitor
    *
    * @param wavelength wavelength in nm
    * @return RGB color encoded in int. each color is represented with 8 bits and has a layout of
    * 00000000RRRRRRRRGGGGGGGGBBBBBBBB where MSB is at the leftmost
    */
    static void wavelengthToRGB(double wavelength, unsigned char& r, unsigned char& g, unsigned char& b) {
        double x, y, z;
        cie1931WavelengthToXYZFit(wavelength, x, y, z);
        double dr, dg, db;
        srgbXYZ2RGB(x, y, z, dr, dg, db);

        r = static_cast<unsigned char>(static_cast<int>(dr * 0xFF) & 0xFF);
        g = static_cast<unsigned char>(static_cast<int>(dg * 0xFF) & 0xFF);
        b = static_cast<unsigned char>(static_cast<int>(db * 0xFF) & 0xFF);
    }

    /**
    * Convert XYZ to RGB in the sRGB color space
    * <p>
    * The conversion matrix and color component transfer function is taken from http://www.color.org/srgb.pdf, which
    * follows the International Electrotechnical Commission standard IEC 61966-2-1 "Multimedia systems and equipment -
    * Colour measurement and management - Part 2-1: Colour management - Default RGB colour space - sRGB"
    *
    * @param xyz XYZ values in a double array in the order of X, Y, Z. each value in the range of [0.0, 1.0]
    * @return RGB values in a double array, in the order of R, G, B. each value in the range of [0.0, 1.0]
    */
    static void srgbXYZ2RGB(double x, double y, double z, double& r, double& g, double& b) {
        double rl = 3.2406255 * x + -1.537208  * y + -0.4986286 * z;
        double gl = -0.9689307 * x + 1.8757561 * y + 0.0415175 * z;
        double bl = 0.0557101 * x + -0.2040211 * y + 1.0569959 * z;

        r = srgbXYZ2RGBPostprocess(rl);
        g = srgbXYZ2RGBPostprocess(gl);
        b = srgbXYZ2RGBPostprocess(bl);
    }

    /**
    * helper function for {@link #srgbXYZ2RGB(double[])}
    */
    static double srgbXYZ2RGBPostprocess(double c) {
        // clip if c is out of range
        c = c > 1 ? 1 : (c < 0 ? 0 : c);

        // apply the color component transfer function
        c = c <= 0.0031308 ? c * 12.92 : 1.055 * std::pow(c, 1. / 2.4) - 0.055;

        return c;
    }

    /**
    * A multi-lobe, piecewise Gaussian fit of CIE 1931 XYZ Color Matching Functions by Wyman el al. from Nvidia. The
    * code here is adopted from the Listing 1 of the paper authored by Wyman et al.
    * <p>
    * Reference: Chris Wyman, Peter-Pike Sloan, and Peter Shirley, Simple Analytic Approximations to the CIE XYZ Color
    * Matching Functions, Journal of Computer Graphics Techniques (JCGT), vol. 2, no. 2, 1-11, 2013.
    *
    * @param wavelength wavelength in nm
    * @return XYZ in a double array in the order of X, Y, Z. each value in the range of [0.0, 1.0]
    */
    static void cie1931WavelengthToXYZFit(double wavelength, double& x, double& y, double& z) {
        double wave = wavelength;

        {
            double t1 = (wave - 442.0) * ((wave < 442.0) ? 0.0624 : 0.0374);
            double t2 = (wave - 599.8) * ((wave < 599.8) ? 0.0264 : 0.0323);
            double t3 = (wave - 501.1) * ((wave < 501.1) ? 0.0490 : 0.0382);

            x = 0.362 * std::exp(-0.5 * t1 * t1)
                + 1.056 * std::exp(-0.5 * t2 * t2)
                - 0.065 * std::exp(-0.5 * t3 * t3);
        }

        {
            double t1 = (wave - 568.8) * ((wave < 568.8) ? 0.0213 : 0.0247);
            double t2 = (wave - 530.9) * ((wave < 530.9) ? 0.0613 : 0.0322);

            y = 0.821 * std::exp(-0.5 * t1 * t1)
                + 0.286 * std::exp(-0.5 * t2 * t2);
        }

        {
            double t1 = (wave - 437.0) * ((wave < 437.0) ? 0.0845 : 0.0278);
            double t2 = (wave - 459.0) * ((wave < 459.0) ? 0.0385 : 0.0725);

            z = 1.217 * std::exp(-0.5 * t1 * t1)
                + 0.681 * std::exp(-0.5 * t2 * t2);
        }
    }

};

} //namespace

#endif

L'intrigue de couleurs de 375nm à 725nm ressemble ci-dessous:

Un problème avec cette méthode est le fait que cela fonctionne seulement entre 400-700 nm et en dehors de cela, il tombe brusquement vers le bas au noir. Une autre question est bleu plus étroit.

A titre de comparaison, voici les couleurs de Vision FAQ à maxmax.com:

J'ai utilisé pour visualiser cette carte de profondeur où chaque pixel représente une valeur de profondeur en mètres et cela ressemble comme ci-dessous:

Méthode 2

Ceci est mis en œuvre dans le cadre de bitmap_image seul fichier bibliothèque en-tête uniquement par Aeash Partow:

inline rgb_t convert_wave_length_nm_to_rgb(const double wave_length_nm)
{
   // Credits: Dan Bruton http://www.physics.sfasu.edu/astro/color.html
   double red   = 0.0;
   double green = 0.0;
   double blue  = 0.0;

   if ((380.0 <= wave_length_nm) && (wave_length_nm <= 439.0))
   {
      red   = -(wave_length_nm - 440.0) / (440.0 - 380.0);
      green = 0.0;
      blue  = 1.0;
   }
   else if ((440.0 <= wave_length_nm) && (wave_length_nm <= 489.0))
   {
      red   = 0.0;
      green = (wave_length_nm - 440.0) / (490.0 - 440.0);
      blue  = 1.0;
   }
   else if ((490.0 <= wave_length_nm) && (wave_length_nm <= 509.0))
   {
      red   = 0.0;
      green = 1.0;
      blue  = -(wave_length_nm - 510.0) / (510.0 - 490.0);
   }
   else if ((510.0 <= wave_length_nm) && (wave_length_nm <= 579.0))
   {
      red   = (wave_length_nm - 510.0) / (580.0 - 510.0);
      green = 1.0;
      blue  = 0.0;
   }
   else if ((580.0 <= wave_length_nm) && (wave_length_nm <= 644.0))
   {
      red   = 1.0;
      green = -(wave_length_nm - 645.0) / (645.0 - 580.0);
      blue  = 0.0;
   }
   else if ((645.0 <= wave_length_nm) && (wave_length_nm <= 780.0))
   {
      red   = 1.0;
      green = 0.0;
      blue  = 0.0;
   }

   double factor = 0.0;

   if ((380.0 <= wave_length_nm) && (wave_length_nm <= 419.0))
      factor = 0.3 + 0.7 * (wave_length_nm - 380.0) / (420.0 - 380.0);
   else if ((420.0 <= wave_length_nm) && (wave_length_nm <= 700.0))
      factor = 1.0;
   else if ((701.0 <= wave_length_nm) && (wave_length_nm <= 780.0))
      factor = 0.3 + 0.7 * (780.0 - wave_length_nm) / (780.0 - 700.0);
   else
      factor = 0.0;

   rgb_t result;

   const double gamma         =   0.8;
   const double intensity_max = 255.0;

   #define round(d) std::floor(d + 0.5)

   result.red   = static_cast<unsigned char>((red   == 0.0) ? red   : round(intensity_max * std::pow(red   * factor, gamma)));
   result.green = static_cast<unsigned char>((green == 0.0) ? green : round(intensity_max * std::pow(green * factor, gamma)));
   result.blue  = static_cast<unsigned char>((blue  == 0.0) ? blue  : round(intensity_max * std::pow(blue  * factor, gamma)));

   #undef round

   return result;
}

Terrain de longueur d'onde de 375-725nm ressemble ci-dessous:

Ceci est plus utilisable dans 400-725nm. Quand je visualise même carte de profondeur comme dans la méthode 1, je reçois ci-dessous. Il y a un problème évident de ces lignes noires que je pense indique bug mineur dans ce code que je ne l'ai pas regardé plus profondément. Aussi les violettes sont peu plus étroit dans cette méthode qui provoque moins de contraste pour les objets lointains.

Licencié sous: CC-BY-SA avec attribution
Non affilié à StackOverflow
scroll top